Only in Titles

           Search results for: Anti-ADAM-17, Activation Site produced in rabbit Antibody   

paperclip

#25623259   2015/03/20 Save this To Up

Identification and functional characterization of alpha-enolase from Taenia pisiformis metacestode.

Enolase belongs to glycolytic enzymes with moonlighting functions. The role of enolase in Taenia species is still poorly understood. In this study, the full length of cDNA encoding for Taenia pisiformis alpha-enolase (Tpeno) was cloned from larval parasites and soluble recombinant Tpeno protein (rTpeno) was produced. Western blot indicated that both rTpeno and the native protein in excretion-secretion antigens from the larvae were recognized by anti-rTpeno monoclonal antibodies (MAbs). The primary structure of Tpeno showed the presence of a highly conserved catalytic site for substrate binding and an enolase signature motif. rTpeno enzymatic activities of catalyzing the reversible dehydration of 2-phosphoglycerate (2-PGA) to phosphoenolpyruvate (PEP) and vice versa were shown to be 30.71 ± 2.15 U/mg (2-PGA to PEP) and 11.29 ± 2.38 U/mg (PEP to 2-PGA), respectively. Far-Western blotting showed that rTpeno could bind to plasminogen, however its binding ability was inhibited by ϵ-aminocaproic acid (ϵACA) in a competitive ELISA test. Plasminogen activation assay showed that plasminogen bound to rTpeno could be converted into active plasmin using host-derived activators. Immunohistochemistry and immunofluorescence indicated that Tpeno was distributed in the bladder wall of the metacestode and the periphery of calcareous corpuscles. In addition, a vaccine trial showed that the enzyme could produce a 36.4% protection rate in vaccinated rabbits against experimental challenges from T. pisiformis eggs. These results suggest that Tpeno with multiple functions may play significant roles in the migration, growth, development and adaptation of T. pisiformis for survival in the host environment.

1875 related Products with: Identification and functional characterization of alpha-enolase from Taenia pisiformis metacestode.

Rabbit Anti-Human Non-Neu Epiandrosterone (3 beta H 2,3 dinor 6 keto Prostag alpha Tubulin TUBA1A TUB Actin, Alpha-Smooth Musc Actin, Alpha-Smooth Musc Actin, Alpha-Smooth Musc ELISA Kit for Tumor Necr G protein subunit alpha 1 G(s) Alpha subunit G(s) Alpha subunit (Mutan alpha 1 Antichymotrypsin

Related Pathways

paperclip

#24731967   2014/12/03 Save this To Up

Intranasal coadministration of Cholera toxin with amoeba lysates modulates the secretion of IgA and IgG antibodies, production of cytokines and expression of pIgR in the nasal cavity of mice in the model of Naegleria fowleri meningoencephalitis.

The nasal mucosa is the first contact with antigens to induce IgA response. The role of this site has rarely been studied. We have shown than intranasal administration with Naegleria fowleri lysates plus Cholera toxin (CT) increased the protection (survival up to 100%) against N. fowleri infection in mice and apparently antibodies IgA and IgG together with polymorphonuclear (PMN) cells avoid the attachment of N. fowleri to apical side of the nasal epithelium. We also observed that nasal immunization resulted in the induction of antigen-specific IgG subclasses (IgG1 and IgG2a) in nasal washes at days 3 and 9 after the challenge and IgA and IgG in the nasal cavity, compared to healthy and infected mice. We found that immunization with both treatments, N. fowleri lysates plus CT or CT alone, increased the expression of the genes for alpha chain, its receptor (pIgR), and it also increased the expression of the corresponding proteins evidenced by the ∼65 and ∼74kDa bands, respectively. Since the production of pIgR, IgA and IgG antibodies, is up-regulated by some factors, we analyzed the expression of genes for IL-10, IL-6, IFN-γ, TNF-α and IL-1β by using RT-PCR of nasal passages. Immunization resulted in an increased expression of IL-10, IL-6, and IFN-γ cytokines. We also aimed to examine the possible influences of immunization and challenge on the production of inflammatory cytokines (TNF-α and IL-1β). We observed that the stimulus of immunization inhibits the production of TNF-α compared to the infected group where the infection without immunization causes an increase in it. Thus, it is possible that the coexistence of selected cytokines produced by our immunization model may provide a highly effective immunological environment for the production of IgA, IgG and pIgR as well as a strong activation of the PMN in mucosal effector tissue such as nasal passages.

1740 related Products with: Intranasal coadministration of Cholera toxin with amoeba lysates modulates the secretion of IgA and IgG antibodies, production of cytokines and expression of pIgR in the nasal cavity of mice in the model of Naegleria fowleri meningoencephalitis.

Ofloxacin CAS Number [824 Multiple organ tumor tiss Thermal Shaker with cooli FDA Standard Frozen Tissu FDA Standard Frozen Tissu FDA Standard Frozen Tissu FDA Standard Frozen Tissu FDA Standard Frozen Tissu FDA Standard Frozen Tissu MultiGene Gradient therm HIV1 integrase antibody, Cholera toxin antibody, M

Related Pathways

paperclip

#21340021   2011/02/22 Save this To Up

Genetically engineered alginate lyase-PEG conjugates exhibit enhanced catalytic function and reduced immunoreactivity.

Alginate lyase enzymes represent prospective biotherapeutic agents for treating bacterial infections, particularly in the cystic fibrosis airway. To effectively deimmunize one therapeutic candidate while maintaining high level catalytic proficiency, a combined genetic engineering-PEGylation strategy was implemented. Rationally designed, site-specific PEGylation variants were constructed by orthogonal maleimide-thiol coupling chemistry. In contrast to random PEGylation of the enzyme by NHS-ester mediated chemistry, controlled mono-PEGylation of A1-III alginate lyase produced a conjugate that maintained wild type levels of activity towards a model substrate. Significantly, the PEGylated variant exhibited enhanced solution phase kinetics with bacterial alginate, the ultimate therapeutic target. The immunoreactivity of the PEGylated enzyme was compared to a wild type control using in vitro binding studies with both enzyme-specific antibodies, from immunized New Zealand white rabbits, and a single chain antibody library, derived from a human volunteer. In both cases, the PEGylated enzyme was found to be substantially less immunoreactive. Underscoring the enzyme's potential for practical utility, >90% of adherent, mucoid, Pseudomonas aeruginosa biofilms were removed from abiotic surfaces following a one hour treatment with the PEGylated variant, whereas the wild type enzyme removed only 75% of biofilms in parallel studies. In aggregate, these results demonstrate that site-specific mono-PEGylation of genetically engineered A1-III alginate lyase yielded an enzyme with enhanced performance relative to therapeutically relevant metrics.

1236 related Products with: Genetically engineered alginate lyase-PEG conjugates exhibit enhanced catalytic function and reduced immunoreactivity.

Nuclear Fast Red Solutio Nuclear Fast Red Solutio Nuclear Fast Red Solutio ReadiUse™ ABTS Solution Androgen Receptor (Phosph Androgen Receptor (Phosph Reduced Glutathione (GSH) Rabbit Anti-Human Androge Rabbit Anti-Human Androge Androgen Receptor (Ab 650 Argininosuccinate Lyase a Argininosuccinate Lyase a

Related Pathways

  •  
  • No related Items
paperclip

#19124039   2009/02/11 Save this To Up

Expression and localization of rabbit B-cell activating factor (BAFF) and its specific receptor BR3 in cells and tissues of the rabbit immune system.

Rabbits are widely used for vaccine development, and investigations of human infectious and autoimmune diseases such as Systemic Lupus Erythematosus (SLE). For these applications, we cloned, sequenced and expressed rabbit B-cell Activating Factor (BAFF), and localized BAFF in cells and tissues of the rabbit immune system. The rabbit homolog of the human BAFF binding site (miniBR3 peptide) within the BAFF-specific receptor BR3 was synthesized. This 26-residue core domain binds to recombinant rabbit BAFF protein. Flow cytometric analyses using purified recombinant rabbit BAFF combined with real-time PCR findings revealed that BAFF detected on peripheral blood B-cells from normal rabbits is probably complexed to BAFF receptors rather than produced by the B-cells. BAFF was detected in developing appendix of young rabbits by immunohistochemical staining suggesting that BAFF plays a role during the period following birth when rabbit B-cell development and pre-immune antibody repertoire diversification and selection is occurring.

2952 related Products with: Expression and localization of rabbit B-cell activating factor (BAFF) and its specific receptor BR3 in cells and tissues of the rabbit immune system.

Androgen Receptor (Phosph Androgen Receptor (Phosph Rabbit Anti-Human Androge Rabbit Anti-Human Androge Androgen Receptor (Ab 650 Rabbit Anti-Human Androge Rabbit anti Androgen Rece Anti-Androgen Receptor pr Anti Androgen Receptor pr Rabbit Anti-Rat Androgen Interferon-a Receptor Typ Macrophage Colony Stimula

Related Pathways

paperclip

#18171325   2008/03/26 Save this To Up

Interaction of the Lys(3614)-Asn(3643) calmodulin-binding domain with the Cys(4114)-Asn(4142) region of the type 1 ryanodine receptor is involved in the mechanism of Ca2+/agonist-induced channel activation.

In the present study we show that the interaction of the CaM (calmodulin)-binding domain (Lys(3614)-Asn(3643)) with the Cys(4114)-Asn(4142) region (a region included in the CaM-like domain) serves as an intrinsic regulator of the RyR1 (type-1 ryanodine receptor). We tested the effects of antibodies raised against the two putative key regions of RyR1 [anti-(Lys(3614)-Asn(3643)) and anti-(Cys(4114)-Asn(4142)) antibodies]. Both antibodies produced significant inhibition of [3H]ryanodine-binding activity of RyR1. This suggests that the inter-domain interaction between the two domains, Lys(3614)-Asn(3643) and Cys(4114)-Asn(4142), activates the channel, and that the binding of antibody to either side of the interacting domain pair interfered with the formation of a 'channel-activation link' between the two regions. In order to spectroscopically monitor the mode of interaction of these domains, the site of inter-domain interaction was fluorescently labelled with MCA [(7-methoxycoumarin-4-yl)acetyl] in a site-directed manner. The accessibility of the bound MCA to a large molecular mass fluorescence quencher, BSA-QSY (namely, the size of a gap between the interacting domains) decreased with an increase of [Ca2+] in a range of 0.03-2.0 microM, as determined by Stern-Volmer fluorescence quenching analysis. The Ca2+-dependent decrease in the quencher accessibility was more pronounced in the presence of 150 microM 4-CmC (4-chlorometacresol), and was reversed by 1 mM Mg2+ (a well-known inhibitor of Ca2+/agonist-induced channel activation). These results suggest that the Lys(3614)-Asn(3643) and Cys(4114)-Asn(4142) regions of RyR1 interact with each other in a Ca2+- and agonist-dependent manner, and this serves as a mechanism of Ca2+- and agonist-dependent activation of the RyR1 Ca2+ channel.

1747 related Products with: Interaction of the Lys(3614)-Asn(3643) calmodulin-binding domain with the Cys(4114)-Asn(4142) region of the type 1 ryanodine receptor is involved in the mechanism of Ca2+/agonist-induced channel activation.

TCP-1 theta antibody Sour Recombinant Thermostable Recombinant Human PKC the Recombinant Human PKC the Rabbit anti PKC theta (Ab Rabbit anti PKC theta (Ab Rabbit anti PKC theta (Ab Thermal Shaker with cooli FDA Standard Frozen Tissu FDA Standard Frozen Tissu FDA Standard Frozen Tissu FDA Standard Frozen Tissu

Related Pathways

  •  
  • No related Items
paperclip

#18096690   2008/03/28 Save this To Up

Activation of growth hormone receptors by growth hormone and growth hormone antagonist dimers: insights into receptor triggering.

GH binds dimerized GH receptors (GHRs) to form a trimolecular complex and induces downstream signaling events. The mechanism by which GH binding converts the inactive predimerized GHR to its active signaling conformation is uncertain. GH has no axis of symmetry. Its interaction with GHR is mediated by two asymmetric binding sites on GH, each with distinct affinity. Site 1 is of high affinity and is thought to mediate the first binding step. Mutation of binding site 2 (as in the human GH mutant, G120R) disrupts the second binding but leaves site 1 binding intact. G120R is a GH antagonist; it binds only one GHR and thus fails to signal, and it prevents productive GHR binding by normal GH. We previously demonstrated that prolactin receptor signaling was achieved by a dimeric version of a prolactin antagonist. We now employ assays of cellular signaling and receptor conformational changes to examine whether GH molecules harboring two site 1 regions can trigger GHR activation. We used recombinantly produced GH-GH and G120R-G120R dimers in which monomers in tandem are connected by a short linker peptide. Rabbit GHR-expressing human fibrosarcoma cells (C14) were treated with GH, G120R, GH-GH, or G120R-G120R. As expected, GH and GH-GH, but not G120R, induced GHR disulfide linkage, as assessed by anti-GHR blotting of cell extracts resolved by SDS-PAGE under nonreducing conditions. Disulfide linkage of GHRs reflects attainment of the active signaling conformation. Likewise, GH and GH-GH, but not G120R, caused Janus kinase 2 (JAK2) and signal transducer and activator of transcription 5 (STAT5) activation. Notably, G120R-G120R, despite its lack of an intact site 2 in either dimer partner, also promoted GHR disulfide linkage and JAK2 and STAT5 activation, albeit less potently than either GH or GH-GH. Time-course responses of the three agonists were similar in terms of JAK2 and STAT5 activation. Pretreatment of cells with our conformation-sensitive inhibitory monoclonal antibody, anti-GHR ext-mAb, prevented ligand-induced receptor activation for all three agonists. GHR was also rendered less immunoprecipitable by anti-GHR ext-mAb after treatment with these agonists. These results are important in that they indicate that a ligand with two intact binding sites 1 causes GHR to adopt similar conformational changes as does GH and thus triggers activation of JAK2 and downstream signaling. Furthermore, we infer that there is substantial flexibility in the GHR extracellular domain, such that it productively accommodates GH dimers that are much larger than GH.

2426 related Products with: Activation of growth hormone receptors by growth hormone and growth hormone antagonist dimers: insights into receptor triggering.

Mouse Anti-Growth Hormone Mouse anti human Growth H Epidermal Growth Factor ( Epidermal Growth Factor ( Human Growth Hormone anti Human Growth Hormone anti Human Growth Hormone anti Human Growth Hormone Grow Rat growth hormone releas Recombinant Mai Mai Growt Growth Hormone, human rec Growth Hormone, human rec

Related Pathways

paperclip

#17361990   2007/04/03 Save this To Up

Peptide probe study of the role of interaction between the cytoplasmic and transmembrane domains of the ryanodine receptor in the channel regulation mechanism.

Ryanodine receptor (RyR) mutations linked with some congenital skeletal and cardiac diseases are localized to three easily definable regions: region 1 (N-terminal domain), region 2 (central domain), and a rather broad region 3 containing the channel pore. As shown in our recent studies, the interdomain interaction between regions 1 and 2 plays a critical role in channel regulation and pathogenesis. Here we present evidence that within region 3 there is a similar channel regulation mechanism mediated by an interdomain interaction. DP15, a peptide corresponding to RyR1 residues 4820-4841, produced significant activation of [3H]ryanodine binding above threshold Ca2+ concentrations (>or=0.3 microM), but MH mutations (L4823P or L4837V) made in DP15 almost completely abolished its channel activating function. To identify the DP15 binding site(s) within RyR1, DP15 (labeled with a fluorescent probe Alexa Fluor 680 and a photoaffinity cross-linker APG) was cross-linked to RyR1, and the site of cross-linking was identified by gel analysis of fluorescently labeled proteolytic fragments with the aid of Western blotting with site-specific antibodies. The shortest fluorescently labeled band was a 96 kDa fragment which was stained with an antibody directed to the region of residues 4114-4142 of RyR1, indicating that the interaction between the region of residues 4820-4841 adjacent to the channel pore and the 96 kDa segment containing the region of residues 4114-4142 is involved in the mechanism of Ca2+-dependent channel regulation. In further support of this concept, anti-DP15 antibody and cardiac counterpart of DP15 produced channel activation similar to that of DP15.

1862 related Products with: Peptide probe study of the role of interaction between the cytoplasmic and transmembrane domains of the ryanodine receptor in the channel regulation mechanism.

Thermal Shaker with cooli FDA Standard Frozen Tissu FDA Standard Frozen Tissu FDA Standard Frozen Tissu FDA Standard Frozen Tissu FDA Standard Frozen Tissu FDA Standard Frozen Tissu Multiple organ tumor tiss MultiGene Gradient therm BACTERIOLOGY BACTEROIDES TCP-1 theta antibody Sour Recombinant Thermostable

Related Pathways

paperclip

#15894802   2005/07/04 Save this To Up

Protein kinase C phosphorylation of the metabotropic glutamate receptor mGluR5 on Serine 839 regulates Ca2+ oscillations.

The activation of Group 1 metabotropic glutamate receptors, mGluR5 and mGluR1alpha, triggers intracellular calcium release; however, mGluR5 activation is unique in that it elicits Ca2+ oscillations. A short region of the mGluR5 C terminus is the critical determinant and differs from the analogous region of mGluR1alpha by a single amino acid residue, Thr-840, which is an aspartic acid (Asp-854) in mGluR1alpha. Previous studies show that mGluR5-elicited Ca2+ oscillations require protein kinase C (PKC)-dependent phosphorylation and identify Thr-840 as the phosphorylation site. However, direct phosphorylation of mGluR5 has not been studied in detail. We have used biochemical analyses to directly investigate the phosphorylation of the mGluR5 C terminus. We showed that Ser-839 on mGluR5 is directly phosphorylated by PKC, whereas Thr-840 plays a permissive role. Although Ser-839 is conserved in mGluR1alpha (Ser-853), it is not phosphorylated, as the adjacent residue (Asp-854) is not permissive; however, mutagenesis of Asp-854 to a permissive alanine residue allows phosphorylation of Ser-853 on mGluR1alpha. We investigated the physiological consequences of mGluR5 Ser-839 phosphorylation using Ca2+ imaging. Mutations that eliminate Ser-839 phosphorylation prevent the characteristic mGluR5-dependent Ca2+ oscillations. However, mutation of Thr-840 to alanine, which prevents potential Thr-840 phosphorylation but is still permissive for Ser-839 phosphorylation, has no effect on Ca2+ oscillations. Thus, we showed that it is phosphorylation of Ser-839, not Thr-840, that is absolutely required for the unique Ca2+ oscillations produced by mGluR5 activation. The Thr-840 residue is important only in that it is permissive for the PKC-dependent phosphorylation of Ser-839.

1431 related Products with: Protein kinase C phosphorylation of the metabotropic glutamate receptor mGluR5 on Serine 839 regulates Ca2+ oscillations.

G Protein Coupled Recepto Rabbit Anti-Rat Metabotro G protein-coupled recepto Recombinant E. coli CA2 P Recombinant E. coli CA2 P Recombinant E. coli CA2 P Recombinant Human CA2 Pro Recombinant Human CA2 Pro Recombinant Human CA2 Pro G protein-coupled recepto G protein-coupled recepto G protein-coupled recepto

Related Pathways

paperclip

#15449090   2004/11/26 Save this To Up

Ca2+, calmodulin and phospholipids regulate nitricoxide synthase activity in the rabbit submandibular gland.

Nitric oxide (NO) plays an important role as an intra- and intercellular signaling molecule in mammalian tissues. In the submandibular gland, NO has been suggested to be involved in the regulation of secretion and in blood flow. NO is produced by activation of NO synthase (NOS). Here, we have investigated the regulation of NOS activity in the rabbit submandibular gland. NOS activity was detected in both the cytosolic and membrane fractions. Characteristics of NOS in the cytosolic and partially purified membrane fractions, such as Km values for l-arginine and EC(50) values for calmodulin and Ca(2+), were similar. A protein band that cross-reacted with anti-nNOS antibody was detected in both the cytosolic and membrane fractions. The membrane-fraction NOS activity increased 1.82-fold with treatment of Triton X-100, but the cytosolic-fraction NOS activity did not. The NOS activity was inhibited by phosphatidic acid (PA) and phosphatidylinositol 4,5-bisphosphate (PIP(2)). The inhibitory effects of phospholipids on the NOS activity were relieved by an increase in Ca(2+) concentrations. These results suggest that the Ca(2+)- and calmodulin-regulating enzyme nNOS occurs in cytosolic and membrane fractions, and PA and PIP(2) regulate the NOS activity in the membrane site by regulating the effect of Ca(2+) in the rabbit submandibular gland.

2140 related Products with: Ca2+, calmodulin and phospholipids regulate nitricoxide synthase activity in the rabbit submandibular gland.

Rabbit Anti-Nitric Oxide Interleukin-34 IL34 (N-t Interleukin-34 IL34 anti Integrin â3 (Phospho Tyr Androgen Receptor (Phosph Androgen Receptor (Phosph Integrin â3 (Phospho Tyr Interferon-a Receptor Typ Rabbit Anti-Inf A Neurami Rabbit Anti-Influenza A H Rabbit Anti-Influenza A N Rabbit Anti-Influenza-A H

Related Pathways

paperclip

#12730143   2003/08/11 Save this To Up

M1/70 attenuates blood-borne neutrophil oxidants, activation, and myofiber damage following stretch injury.

The purpose of this study was to determine the role of the CD11b-dependent respiratory burst in neutrophil oxidant generation and activation, interleukin-8 (IL-8) production, and myofiber damage after muscle stretch injury by using the monoclonal antibody M1/70 to block this pathway. Twelve male New Zealand White rabbits were randomly assigned to a treatment group: M1/70 (n = 6), IgG isotype control (n = 3), or saline control (n = 3). After intravenous injection of the assigned agent under gas anesthesia, a standardized single-stretch injury was created in the right tibialis anterior, whereas the left tibialis anterior underwent a sham surgery. Blood-borne neutrophil oxidant generation and CD11b receptor density and plasma IL-8 levels were measured pre- and 24 h postinjury. Damage was assessed histologically at the hematoma site by counting torn myofibers. M1/70 group demonstrated decreased blood-borne neutrophil oxidant generation (P < 0.05) and CD11b receptor density (P < 0.05), an increase in plasma IL-8 concentration (P < 0.01), and less torn myofibers (P < 0.01) compared with IgG isotype or saline control groups. These data indicate that 1). CD11b-dependent respiratory burst is a major source of oxidants produced by the neutrophil, and that treatment with M1/70 2). attenuates neutrophil activation status, 3). increases plasma IL-8 concentration, and 4). minimizes myofiber damage 24 h postmuscle stretch injury.

1373 related Products with: M1/70 attenuates blood-borne neutrophil oxidants, activation, and myofiber damage following stretch injury.

∆2-Androstene-1α,17β- (5α)-Androstane-3,11,17- Cell Strainers 70μm Cell REASTAIN® Quick Diff Kit Androgen Receptor (Phosph Androgen Receptor (Phosph Rabbit Anti-Human Androge Rabbit Anti-Human Androge anti A1, A2 human blood a anti A1, A2, A3 human blo anti B human blood antige anti AB human blood antig

Related Pathways