Only in Titles

           Search results for: Bean common mosaic virus (BCMV)    

paperclip

#28855829   2017/08/31 Save this To Up

Detection of new viruses in alfalfa, weeds and cultivated plants growing adjacent to alfalfa fields in Saudi Arabia.

A total of 1368 symptomatic plant samples showing different virus-like symptoms such as mottling, chlorosis, mosaic, yellow mosaic, vein clearing and stunting were collected from alfalfa, weed and cultivated plant species growing in vicinity of alfalfa fields in five principal regions of alfalfa production in Saudi Arabia. DAS-ELISA test indicated occurrence of 11 different viruses in these samples, 10 of which were detected for the first time in Saudi Arabia. Eighty percent of the alfalfa samples and 97.5% of the weed and cultivated plants samples were found to be infected with one or more of these viruses. Nine weed plant species were found to harbor these viruses namely, Sonchus oleraceus, Chenopodium spp., Hibiscus spp., Cichorium intybus, Convolvulus arvensis, Malva parviflora, Rubus fruticosus, Hippuris vulgaris, and Flaveria trinervia. These viruses were also detected in seven cultivated crop plants growing adjacent to the alfalfa fields including Vigna unguiculata, Solanum tuberosum, Solanum melongena, Phaseolus vulgaris, Cucurbita maxima, Capsicum annuum, and Vicia faba. The newly reported viruses together with their respective percent of detection in alfalfa, and in both weeds and cultivated crop plant species together were as follows: Bean leaf roll virus (BLRV) {12.5 and 4.5%}, Lucerne transient streak virus (LTSV) {2.9 and 3.5%}, Bean yellow mosaic virus (BYMV) {1.4 and 4.5%}, Bean common mosaic virus (BCMV) {1.2 and 4.5%}, Red clover vein mosaic virus (RCVMV) {1.2 and 4%}, White clover mosaic virus (WCIMV) {1.0 and 5%}, Cucumber mosaic virus (CMV) {0.8 and 3%}, Pea streak virus (PeSV) {0.4 and 4.5%} and Tobacco streak virus (TSV) {0.3 and 2.5%}. Alfalfa mosaic virus (AMV), the previously reported virus in alfalfa, had the highest percentage of detection in alfalfa accounting for 58.4% and 62.8% in the weeds and cultivated plants. Peanut stunt virus (PSV) was also detected for the first time in Saudi Arabia with a 66.7% of infection in 90 alfalfa samples collected from the surveyed regions during the last visit that tested negative to all the previously detected viruses.

2579 related Products with: Detection of new viruses in alfalfa, weeds and cultivated plants growing adjacent to alfalfa fields in Saudi Arabia.

Oral squamous cell cancer Recombinant Human Interfe Native Influenza HA (A To Native Influenza HA (A To Native Influenza HA (A To Cell Meter™ Fluorimetri Cell Meter™ Fluorimetri T-2 Toxin Mycotoxins ELIS Nycodenz, non ionic, non Homogenizer for 24 sample Top five cancer tissue ar Pancreatic carcinoma and

Related Pathways

paperclip

#28756582   2017/07/30 Save this To Up

RNAi-mediated SMV P3 cistron silencing confers significantly enhanced resistance to multiple Potyvirus strains and isolates in transgenic soybean.

Robust RNAi-mediated resistance to multiple Potyvirus strains and isolates, but not to Secovirus BPMV, was conferred by expressing a short SMV P3 hairpin in soybean plants. Engineering resistance to multiple Potyvirus strains is of great interest because of a wide variability of the virus strains, and mixed infections of multiple viruses or strains commonly associated with field grown soybean. In this study, RNAi-mediated silencing of the soybean mosaic virus (SMV) P3 cistron, which is reported to participate in virus movements and pathogenesis and to be the putative determinant of SMV virulence, was used to induce resistance to multiple Potyvirus strains and isolates in soybean. A 302 bp inverted repeat (IR) of the P3 cistron, isolated from the SMV strain SC3, was introduced into soybean. The transgenic lines exhibited stable and enhanced resistance to SMV SC3 under field conditions over 3 consecutive years. The transgenic lines also showed significantly enhanced resistance to four other SMV strains (SC7, SC15, SC18, and SMV-R, a novel recombinant found in China), the soybean-infecting bean common mosaic virus (BCMV) and watermelon mosaic virus (WMV). Nevertheless, no significant differences were found between transgenic plants and their non-transformed (NT) counterparts in terms of resistance to bean pod mottle virus (BPMV, Secoviridae). Consistent with the results of resistance evaluations, the expression of the respective viral CP cistrons and virus accumulation were significantly lower in seven Potyvirus strains and isolates than in the NT plants, but not in BCMV-inoculated transgenic lines. The results demonstrate the effectiveness of engineering resistance to multiple Potyvirus strains and isolates via RNAi-mediated SMV P3 cistron silencing, and thus provide an effective control strategy against Potyvirus infections in soybean and other crops.

1133 related Products with: RNAi-mediated SMV P3 cistron silencing confers significantly enhanced resistance to multiple Potyvirus strains and isolates in transgenic soybean.

Toxoplasma gondii P30 (SA Anti AGO2 Human, Monoclon Anti AGO2 Mouse, Monoclon Anti AGO2 Human, Monoclon Anti AGO2 Mouse, Monoclon C646, p300/CBP Inhibitor C646, p300 CBP Inhibitor C646, p300 CBP Inhibitor; C646, p300/CBP Inhibitor C646, p300 CBP Inhibitor C646, p300 CBP Inhibitor; Recombinant HIV-1 p31 Int

Related Pathways

paperclip

#28358318   2017/03/30 Save this To Up

Simultaneous Detection of Both RNA and DNA Viruses Infecting Dry Bean and Occurrence of Mixed Infections by BGYMV, BCMV and BCMNV in the Central-West Region of Mexico.

A multiplex reverse transcription polymerase chain reaction (RT-PCR) assay was developed to simultaneously detect bean common mosaic virus (BCMV), bean common mosaic necrotic virus (BCMNV), and bean golden yellow mosaic virus (BGYMV) from common bean leaves dried with silica gel using a single total nucleic acid extraction cetyl trimethyl ammonium bromide (CTAB) method. A mixture of five specific primers was used to amplify three distinct fragments corresponding to 272 bp from the AC1 gene of BGYMV as well as 469 bp and 746 bp from the CP gene of BCMV and BCMNV, respectively. The three viruses were detected in a single plant or in a bulk of five plants. The multiplex RT-PCR was successfully applied to detect these three viruses from 187 field samples collected from 23 municipalities from the states of Guanajuato, Nayarit and Jalisco, Mexico. Rates of single infections were 14/187 (7.5%), 41/187 (21.9%), and 35/187 (18.7%), for BGYMV, BCMV, and BCMNV, respectively; 29/187 (15.5%) samples were co-infected with two of these viruses and 10/187 (5.3%) with the three viruses. This multiplex RT-PCR assay is a simple, rapid, sensitive, and cost-effective method for detecting these viruses in the common bean and can be used for routine molecular diagnosis and epidemiological studies.

2887 related Products with: Simultaneous Detection of Both RNA and DNA Viruses Infecting Dry Bean and Occurrence of Mixed Infections by BGYMV, BCMV and BCMNV in the Central-West Region of Mexico.

Androgen Receptor (Phosph Androgen Receptor (Phosph Rabbit Anti-Human Androge Rabbit Anti-Human Androge Androgen Receptor (Ab 650 AZD-3514 Mechanisms: Andr 17β-Acetoxy-2α-bromo-5 (5α,16β)-N-Acetyl-16-[2 (5α,16β)-N-Acetyl-16-ac 5α-N-Acetyl-2'H-androst- 5α-N-Acetyl-2'H-androst- 3-O-Acetyl 5,14-Androstad

Related Pathways

paperclip

#27515794   2016/08/12 Save this To Up

Dynamic transcriptome profiling of Bean Common Mosaic Virus (BCMV) infection in Common Bean (Phaseolus vulgaris L.).

Bean common mosaic virus (BCMV) is widespread, with Phaseolus species as the primary host plants. Numerous BCMV strains have been identified on the basis of a panel of bean varieties that distinguish the pathogenicity types with respect to the viral strains. The molecular responses in Phaseolus to BCMV infection have not yet been well characterized.

1391 related Products with: Dynamic transcriptome profiling of Bean Common Mosaic Virus (BCMV) infection in Common Bean (Phaseolus vulgaris L.).

Bean common mosaic virus Bean common mosaic virus Bean common mosaic virus CD45, Leucocyte Common A CD45, Leucocyte Common A CD45, Leucocyte Common A Recombinant Viral Antige Rubella virus E1 mosaic r Recombinant Viral antige Human Epstein-Barr Virus Mouse Epstein-Barr Virus Recombinant Influenza B V

Related Pathways

paperclip

#26196181   2015/11/17 Save this To Up

Bean common mosaic virus Isolate Exhibits a Novel Pathogenicity Profile in Common Bean, Overcoming the bc-3 Resistance Allele Coding for the Mutated eIF4E Translation Initiation Factor.

Resistance against Bean common mosaic virus (BCMV) in Phaseolus vulgaris is governed by six recessive resistance alleles at four loci. One of these alleles, bc-3, is able to protect P. vulgaris against all BCMV strains and against other potyviruses; bc-3 was identified as the eIF4E allele carrying mutated eukaryotic translation initiation factor gene. Here, we characterized a novel BCMV isolate 1755a that was able to overcome bc-2 and bc-3 alleles in common bean. Thus, it displayed a novel pattern of interactions with resistance genes in P. vulgaris, and was assigned to a new pathogroup, PG-VIII. The IVT7214 cultivar supporting the replication of BCMV-1755a was found to have the intact homozygous bc-3 cleaved amplified polymorphic sequences marker and corresponding mutations in the eIF4E allele that confer resistance to BCMV isolates from all other pathogroups as well as to other potyviruses. The VPg protein of 1755a had seven amino acid substitutions relative to VPgs of other BCMV isolates unable to overcome bc-3. The 1755a genome was found to be a recombinant between NL1, US1 (both PG-I), and a yet unknown BCMV strain. Analysis of the recombination patterns in the genomes of NL1 and US1 (PG-I), NY15P (PG-V), US10 and RU1-OR (PG-VII), and 1755a (PG-VIII), indicated that P1/HC-Pro cistrons of BCMV strains may interact with most resistance genes. This is the first report of a BCMV isolate able to overcome the bc-3 resistance allele, suggesting that the virus has evolved mechanisms to overcome multiple resistance genes available in common bean.

2388 related Products with: Bean common mosaic virus Isolate Exhibits a Novel Pathogenicity Profile in Common Bean, Overcoming the bc-3 Resistance Allele Coding for the Mutated eIF4E Translation Initiation Factor.

Bean common mosaic virus Bean common mosaic virus Bean common mosaic virus FDA Standard Frozen Tissu FDA Standard Frozen Tissu FDA Standard Frozen Tissu FDA Standard Frozen Tissu FDA Standard Frozen Tissu FDA Standard Frozen Tissu Recombinant Viral Antige Rubella virus E1 mosaic r Thermal Shaker with cooli

Related Pathways

paperclip

#26111585   2015/06/26 Save this To Up

Bean Common Mosaic Virus and Bean Common Mosaic Necrosis Virus: Relationships, Biology, and Prospects for Control.

The closely related potyviruses Bean common mosaic virus (BCMV) and Bean common mosaic necrosis virus (BCMNV) are major constraints on common bean (Phaseolus vulgaris) production. Crop losses caused by BCMV and BCMNV impact severely not only on commercial scale cultivation of this high-value crop but also on production by smallholder farmers in the developing world, where bean serves as a key source of dietary protein and mineral nutrition. In many parts of the world, progress has been made in combating BCMV through breeding bean varieties possessing the I gene, a dominant gene conferring resistance to most BCMV strains. However, in Africa, and in particular in Central and East Africa, BCMNV is endemic and this presents a serious problem for deployment of the I gene because this virus triggers systemic necrosis (black root disease) in plants possessing this resistance gene. Information on these two important viruses is scattered throughout the literature from 1917 onward, and although reviews on resistance to BCMV and BCMNV exist, there is currently no comprehensive review on the biology and taxonomy of BCMV and BCMNV. In this chapter, we discuss the current state of our knowledge of these two potyviruses including fundamental aspects of classification and phylogeny, molecular biology, host interactions, transmission through seed and by aphid vectors, geographic distribution, as well as current and future prospects for the control of these important viruses.

1066 related Products with: Bean Common Mosaic Virus and Bean Common Mosaic Necrosis Virus: Relationships, Biology, and Prospects for Control.

Bean common mosaic virus Bean common mosaic virus Bean common mosaic virus Recombinant Viral Antige Rubella virus E1 mosaic r Soybean mosaic virus (SM Soybean mosaic virus (SM Soybean mosaic virus (SM Anti-Infectious Pancreati Anti-Infectious Pancreati Anti-Infectious Pancreati Anti-Infectious Pancreati

Related Pathways

paperclip

#25326146   2014/10/25 Save this To Up

Application of in silico bulked segregant analysis for rapid development of markers linked to Bean common mosaic virus resistance in common bean.

Common bean was one of the first crops that benefited from the development and utilization of molecular marker-assisted selection (MAS) for major disease resistance genes. Efficiency of MAS for breeding common bean is still hampered, however, due to the dominance, linkage phase, and loose linkage of previously developed markers. Here we applied in silico bulked segregant analysis (BSA) to the BeanCAP diversity panel, composed of over 500 lines and genotyped with the BARCBEAN_3 6K SNP BeadChip, to develop codominant and tightly linked markers to the I gene controlling resistance to Bean common mosaic virus (BCMV).

1574 related Products with: Application of in silico bulked segregant analysis for rapid development of markers linked to Bean common mosaic virus resistance in common bean.

Bean common mosaic virus Bean common mosaic virus Bean common mosaic virus Mouse AntiInfluenza B Nuc Mouse Anti-Insulin-Like G FIV Core Ag, recombinant Analysis Tool for AAH-INF Analysis Tool for AAH-INF Analysis Tool for AAH-INF Analysis Tool for AAH-INF Analysis Tool for AAM-INF Analysis Tool for AAM-INF

Related Pathways

paperclip

#25107622   2014/09/19 Save this To Up

A genomic survey of thirty soybean-infecting bean common mosaic virus (BCMV) isolates from China pointed BCMV as a potential threat to soybean production.

Widely known as a severe pathogen of bean plants, the bean common mosaic virus (BCMV) has been reported to infect soybeans only sporadically and the involved strains were all found in China regions. To explore variations among soybean-infecting BCMV strains, hundreds of soybean mosaic leave samples were collected throughout China, with a total of 30 BCMV isolates detected and their genomes sequenced. These newly obtained genomes, together with 16 other BCMV genomes available in GenBank were examined from multiple aspects to characterize BCMV evolutionary processes. Phylogenetic analysis showed that both soybean-infecting BCMVs (group I) and peanut-infecting BCMVs (group II) are distantly related to other BCMVs, suggesting ancestral differentiation and host adaptation. Genetic variation analysis showed that P1, P3 and 6K2 genes and the beginning portion of CP gene showed higher levels of variation relative to other genes. Moreover, selection analyses further confirmed that a number of sites within the P1 and P3 genes have suffered positive selection. These obtained BCMV sequences also exhibit high recombination frequencies, indicating a more dynamic evolutionary history. Finally, 12 different soybean cultivars were challenged with two BCMV isolates (DXH015 and HZZB011), with most of the cultivars successfully infected. These findings suggest that BCMV is indeed a potential threat to soybean production.

2174 related Products with: A genomic survey of thirty soybean-infecting bean common mosaic virus (BCMV) isolates from China pointed BCMV as a potential threat to soybean production.

Bean common mosaic virus Bean common mosaic virus Bean common mosaic virus Recombinant Viral Antige Rubella virus E1 mosaic r Cell Meter™ JC 10 Mitoc Cell Meter™ JC 10 Mitoc Cell Meter™ NIR Mitocho Cell Meter™ NIR Mitocho Cell Meter™ Mitochondri Cell Meter™ Fluorimetri Cell Meter™ Fluorimetri

Related Pathways

paperclip

#24915430   2014/06/11 Save this To Up

Recombinants of bean common mosaic virus (BCMV) and genetic determinants of BCMV involved in overcoming resistance in common bean.

Bean common mosaic virus (BCMV) exists as a complex of strains classified by reactions to resistance genes found in common bean (Phaseolus vulgaris); seven BCMV pathotypes have been distinguished thus far, numbered I to VII. Virus genetic determinants involved in pathogenicity interactions with resistance genes have not yet been identified. Here, we describe the characterization of two novel field isolates of BCMV that helped to narrow down these genetic determinants interacting with specific P. vulgaris resistance factors. Based on a biological characterization on common bean differentials, both isolates were classified as belonging to pathotype VII, similar to control isolate US10, and both isolates exhibited the B serotype. The whole genome was sequenced for both isolates and found to be 98 to 99% identical to the BCMV isolate RU1 (pathotype VI), and a single name was retained: BCMV RU1-OR. To identify a genetic determinant of BCMV linked to the BCMV pathotype VII, the whole genome was also sequenced for two control isolates, US10 and RU1-P. Inspection of the nucleotide sequences for BCMV RU1-OR and US10 (both pathotype VII) and three closely related sequences of BCMV (RU1-P, RU1-D, and RU1-W, all pathotype VI) revealed that RU1-OR originated through a series of recombination events between US10 and an as-yet-unidentified BCMV parental genome, resulting in changes in virus pathology. The data obtained suggest that a fragment of the RU1-OR genome between positions 723 and 1,961 nucleotides that is common to US10 and RU1-OR in the P1-HC-Pro region of the BCMV genome may be responsible for the ability to overcome resistance in bean conferred by the bc-2(2) gene. This is the first report of a virus genetic determinant responsible for overcoming a specific BCMV resistance gene in common bean.

2166 related Products with: Recombinants of bean common mosaic virus (BCMV) and genetic determinants of BCMV involved in overcoming resistance in common bean.

Bean common mosaic virus Bean common mosaic virus Bean common mosaic virus Human Epstein-Barr Virus Mouse Epstein-Barr Virus Recombinant Influenza B V Recombinant Influenza B V Recombinant Influenza B V Native Influenza A Virus Native Influenza A Virus Native Influenza A Virus Recombinant Influenza A V

Related Pathways

paperclip

#24875385   2014/10/23 Save this To Up

A Recombinant of Bean common mosaic virus Induces Temperature-Insensitive Necrosis in an I Gene-Bearing Line of Common Bean.

The I gene is a single, dominant gene conferring temperature-sensitive resistance to all known strains of Bean common mosaic virus (BCMV) in common bean (Phaseolus vulgaris). However, the closely related Bean common mosaic necrosis virus (BCMNV) induces whole plant necrosis in I-bearing genotypes of common bean, and the presence of additional, recessive genes is required to prevent this severe whole plant necrotic reaction caused by BCMNV. Almost all known BCMNV isolates have so far been classified as having pathotype VI based on their interactions with the five BCMV resistance genes, and all have a distinct serotype A. Here, we describe a new isolate of BCMV, RU1M, capable of inducing whole plant necrosis in the presence of the I gene, that appears to belong to pathotype VII and exhibits B-serotype. Unlike other isolates of BCMV, RU1M was able to induce severe whole plant necrosis below 30°C in bean cultivar Jubila that carries the I gene and a protective recessive gene bc-1. The whole genome of RU1M was cloned and sequenced and determined to be 9,953 nucleotides long excluding poly(A), coding for a single polyprotein of 3,186 amino acids. Most of the genome was found almost identical (>98%) to the BCMV isolate RU1-OR (also pathotype VII) that did not induce necrotic symptoms in 'Jubila'. Inspection of the nucleotide sequences for BCMV isolates RU1-OR, RU1M, and US10 (all pathotype VII) and three closely related sequences of BCMV isolates RU1P, RU1D, and RU1W (all pathotype VI) revealed that RU1M is a product of recombination between RU1-OR and a yet unknown potyvirus. A 0.8-kb fragment of an unknown origin in the RU1M genome may have led to its ability to induce necrosis regardless of temperature in beans carrying the I gene. This is the first report of a BCMV isolate inducing temperature-insensitive necrosis in an I gene containing bean genotype.

1687 related Products with: A Recombinant of Bean common mosaic virus Induces Temperature-Insensitive Necrosis in an I Gene-Bearing Line of Common Bean.

Anti-Infectious Pancreati Anti-Infectious Pancreati Anti-Infectious Pancreati Anti-Infectious Pancreati Recombinant Hemagglutinin FIV Core Ag, recombinant Bean common mosaic virus Bean common mosaic virus Bean common mosaic virus Recombinant Viral Antige Rubella virus E1 mosaic r West Nile Virus Envelope

Related Pathways

  •  
  • No related Items