Only in Titles

           Search results for: Caspase 2 Inhibitor Z VDVAD FMK    

paperclip

#27864687   2016/11/19 Save this To Up

Omega-3 fatty acid EPA improves regenerative capacity of mouse skeletal muscle cells exposed to saturated fat and inflammation.

Sarcopenic obesity is characterised by high fat mass, low muscle mass and an elevated inflammatory environmental milieu. We therefore investigated the effects of elevated inflammatory cytokine TNF-α (aging/obesity) and saturated fatty acid, palmitate (obesity) on skeletal muscle cells in the presence/absence of EPA, a-3 polyunsaturated fatty acid with proposed anti-inflammatory, anti-obesity activities. In the present study we show that palmitate was lipotoxic, inducing high levels of cell death and blocking myotube formation. Cell death under these conditions was associated with increased caspase activity, suppression of differentiation, reductions in both creatine kinase activity and gene expression of myogenic factors; IGF-II, IGFBP-5, MyoD and myogenin. However, inhibition of caspase activity via administration of Z-VDVAD-FMK (caspase-2), Z-DEVD-FMK (caspase-3) and ZIETD-KMK (caspase 8) was without effect on cell death. By contrast, lipotoxicity associated with elevated palmitate was reduced with the MEK inhibitor PD98059, indicating palmitate induced cell death was MAPK mediated. These lipotoxic conditions were further exacerbated in the presence of inflammation via TNF-α co-administration. Addition of EPA under cytotoxic stress (TNF-α) was shown to partially rescue differentiation with enhanced myotube formation being associated with increased MyoD, myogenin, IGF-II and IGFBP-5 expression. EPA had little impact on the cell death phenotype observed in lipotoxic conditions but did show benefit in restoring differentiation under lipotoxic plus cytotoxic conditions. Under these conditions Id3 (inhibitor of differentiation) gene expression was inversely linked with survival rates, potentially indicating a novel role of EPA and Id3 in the regulation of apoptosis in lipotoxic/cytotoxic conditions. Additionally, signalling studies indicated the combination of lipo- and cyto-toxic effects on the muscle cells acted through ceramide, JNK and MAPK pathways and blocking these pathways using PD98059 (MEK inhibitor) and Fumonisin B1 (ceramide inhibitor) significantly reduced levels of cell death. These findings highlight novel pathways associated with in vitro models of lipotoxicity (palmitate-mediated) and cytotoxicity (inflammatory cytokine mediated) in the potential targeting of molecular modulators of sarcopenic obesity.

1615 related Products with: Omega-3 fatty acid EPA improves regenerative capacity of mouse skeletal muscle cells exposed to saturated fat and inflammation.

Fatty Acid Synthase (FASN EnzyChrom™ Free Fatty A Mouse Anti-Fatty Acid Bin Fatty acid free heat sho Fatty acid free heat sho Fatty acid free heat sho Fatty acid free heat sho Fatty Acid Synthase antib Fatty Acid Synthase antib Triglyceride Assay Kit Li Leptin ELISA Kit, Rat Lep (1R,3S,5R)-2-Azabicyclo[3

Related Pathways

paperclip

#27017918   2016/04/12 Save this To Up

Cardiac glycoside-induced cell death and Rho/Rho kinase pathway: Implication of different regulation in cancer cell lines.

Previously, we demonstrated that the Rho/ROCK pathway is involved in ouabain-induced apoptosis in HUVEC. In the current work, we investigated whether the Rho/ROCK pathway is functional during cardiac glycosides-induced cytotoxic effects in cancer cell lines, as well as in non-tumor cells. For that purpose, we evaluated the role of ROCK activation in bleb formation and cell migration over upstream and downstream effectors in addition to ROCK cleavage after cardiac glycosides treatment. All three cardiac glycosides (ouabain, digoxin and bufalin) induced cell death in HeLa and HepG2 cells and increased the formation of blebbing in HeLa cells. In contrast to our previous study, ROCK inhibitor Y27632 did not prevent bleb formation. Observation of ROCK II cleavage after ouabain, digoxin and oxaliplatin treatments in HeLa and/or HepG2 cells suggested that cleavage is independent of cell type and cell death induction. While inhibiting cleavage of ROCK II by the caspase inhibitors z-VAD-fmk, z-VDVAD-fmk and z-DEVD-fmk, evaluation of caspase 2 siRNA ineffectiveness on this truncation indicated that caspase-dependent ROCK II cleavage is differentially regulated in cancer cell lines. In HeLa cells, ouabain induced the activation of ROCK, although it did not induce phosphorylation of ERM, an upstream effector. While Y27632 inhibited the migration of HeLa cells, 10nM ouabain had no effect on cell migration. In conclusion, these findings indicate that the Rho/ROCK pathway is regulated differently in cancer cell lines compared to normal cells during cardiac glycosides-induced cell death.

2921 related Products with: Cardiac glycoside-induced cell death and Rho/Rho kinase pathway: Implication of different regulation in cancer cell lines.

Epidermal Growth Factor ( Epidermal Growth Factor ( Jurkat Cell Extract (Indu Jurkat Cell Extract (Indu Jurkat Cell Extract (Indu Jurkat Cell Extract (Indu Macrophage Colony Stimula Macrophage Colony Stimula GLP 2 ELISA Kit, Rat Prog Cell cycle antibody array Cell Cycle Control Phosph Cell Cycle Phospho-Specif

Related Pathways

paperclip

#23285297   2013/01/03 Save this To Up

Pharmacological inhibition of caspase-2 protects axotomised retinal ganglion cells from apoptosis in adult rats.

Severing the axons of retinal ganglion cells (RGC) by crushing the optic nerve (ONC) causes the majority of RGC to degenerate and die, primarily by apoptosis. We showed recently that after ONC in adult rats, caspase-2 activation occurred specifically in RGC while no localisation of caspase-3 was observed in ganglion cells but in cells of the inner nuclear layer. We further showed that inhibition of caspase-2 using a single injection of stably modified siRNA to caspase-2 protected almost all RGC from death at 7 days, offering significant protection for up to 1 month after ONC. In the present study, we confirmed that cleaved caspase-2 was localised and activated in RGC (and occasional neurons in the inner nuclear layer), while TUNEL⁺ RGC were also observed after ONC. We then investigated if suppression of caspase-2 using serial intravitreal injections of the pharmacological inhibitor z-VDVAD-fmk (z-VDVAD) protected RGC from death for 15 days after ONC. Treatment of eyes with z-VDVAD suppressed cleaved caspase-2 activation by >85% at 3-4 days after ONC. Increasing concentrations of z-VDVAD protected greater numbers of RGC from death at 15 days after ONC, up to a maximum of 60% using 4000 ng/ml of z-VDVAD, compared to PBS treated controls. The 15-day treatment with 4000 ng/ml of z-VDVAD after ONC suppressed levels of cleaved caspase-2 but no significant changes in levels of cleaved caspase-3, -6, -7 or -8 were detected. Although suppression of caspase-2 protected 60% of RGC from death, RGC axon regeneration was not promoted. These results suggest that caspase-2 specifically mediates death of RGC after ONC and that suppression of caspase-2 may be a useful therapeutic strategy to enhance RGC survival not only after axotomy but also in diseases where RGC death occurs such as glaucoma and optic neuritis.

2197 related Products with: Pharmacological inhibition of caspase-2 protects axotomised retinal ganglion cells from apoptosis in adult rats.

Caspase-3 Inhibitor Z-DEV Caspase-3 Inhibitor Z-DEV Caspase 3 Inhibitor Z DEV Caspase 3 Inhibitor Z DEV Caspase-Family Inhibitor Caspase-Family Inhibitor Caspase Family Inhibitor Caspase Family Inhibitor Caspase-6 Inhibitor Z-VEI Caspase-6 Inhibitor Z-VEI Caspase 6 Inhibitor Z VEI Caspase 6 Inhibitor Z VEI

Related Pathways

paperclip

#22002103   2012/02/13 Save this To Up

5-Phenylselenyl- and 5-methylselenyl-methyl-2'-deoxyuridine induce oxidative stress, DNA damage, and caspase-2-dependent apoptosis in cancer cells.

In the present study, we investigated the signaling pathways implicated in the induction of apoptosis by two modified nucleosides, 5-phenylselenyl-methyl-2'-deoxyuridine (PhSe-T) and 5-methylselenyl-methyl-2'-deoxyuridine (MeSe-T), using human cancer cell lines. The induction of apoptosis was associated with proteolytic activation of caspase-3 and -9, PARP cleavage, and decreased levels of IAP family members, including c-IAP-1 and c-IAP-2, but had no effect on XIAP and survivin. PhSe-T and MeSe-T also enhanced the activities of caspase-2 and -8, Bid cleavage, and the conformational activation of Bax. Additionally, nucleoside derivative-induced apoptosis was inhibited by the selective inhibitors of caspase-2, -3, -8, and -9 and also by si-RNAs against caspase-2, -3, -8, and -9; however, inhibition of caspase-2 and -3 was more effective at preventing apoptosis than inhibition of caspase-8 and -9. Moreover, the inhibition of caspase-2 activation by the pharmacological inhibitor z-VDVAD-fmk or by the knockdown of protein expression using siRNA suppressed nucleoside derivative-induced caspase-3 activation, but not vice versa. PhSe-T and MeSe-T also induced a Δψ(m) loss via a CsA-insensitive mechanism, ROS production, and DNA damage, including strand breaks. Moreover, ROS scavengers such as NAC, tiron, and quercetin inhibited nucleoside derivative-induced ROS generation and apoptosis by blocking the sequential activation of caspase-2 and -3, indicating the role of ROS in caspase-2-mediated apoptosis. Taken together, these results indicate that caspase-2 acts upstream of caspase-3 and that caspase-2 functions in response to DNA damage in both PhSe-T- and MeSe-T-induced apoptosis. Our results also suggest that ROS are critical regulators of the sequential activation of caspase-2 and -3 in nucleoside derivative-treated cancer cells.

1937 related Products with: 5-Phenylselenyl- and 5-methylselenyl-methyl-2'-deoxyuridine induce oxidative stress, DNA damage, and caspase-2-dependent apoptosis in cancer cells.

OxiSelect™ Cellular UV- Cancer Apoptosis Phospho- Ready to use Apoptosis In Anti AGO2 Human, Monoclon Anti AGO2 Mouse, Monoclon Anti AGO2 Human, Monoclon Anti AGO2 Mouse, Monoclon anti HSV (II) gB IgG1 (mo anti HCMV IE pp65 IgG1 (m anti HCMV gB IgG1 (monocl OXI TEK (Oxidative Stress DNA (cytosine 5) methyltr

Related Pathways

  •  
  • No related Items
paperclip

#21229646   2011/01/13 Save this To Up

Endoplasmic reticulum stress associated with caspases-4 and -2 mediates korbazol-induced B-chronic lymphocytic leukemia cell apoptosis.

B-cell chronic lymphocytic leukemia (B-CLL) is an incurable disease that rapidly develops drug resistance. Therefore there is a need for identifying new agents that will improve the therapeutic outcome. Korbazol is a natural product known to exert cytotoxic effect on the in vitro survival of leukemic cells. The aim of this study was to investigate the mechanism of korbazol-induced apoptosis in B-CLL leukemic cells.

1954 related Products with: Endoplasmic reticulum stress associated with caspases-4 and -2 mediates korbazol-induced B-chronic lymphocytic leukemia cell apoptosis.

Hairy Cell Leukemia; Clo Hairy Cell Leukemia; Clo CD5 (Mantel Cell Lymphom Hairy Cell Leukemia; Clo Jurkat Cell Extract (Indu Jurkat Cell Extract (Indu Cell Meter™ Caspase 9 A Recombinant Human T-cell Cell Meter™ Annexin V B Cell Meter™ Annexin V B Cell Meter™ Annexin V B Cell Meter™ Phosphatidy

Related Pathways

paperclip

#21107704   2011/02/09 Save this To Up

Sequential caspase-2 and caspase-8 activation is essential for saikosaponin a-induced apoptosis of human colon carcinoma cell lines.

In this study, we investigated the signaling pathways implicated in SSa-induced apoptosis of human colon carcinoma (HCC) cell lines. SSa-induced apoptosis of HCC cells was associated with proteolytic activation of caspase-9, caspase-3, and PARP cleavages and decreased levels of IAP family members, such as XIAP and c-IAP-2, but not of survivin. The fluorescence intensity of DiOC6 was significantly reduced after SSa treatment. CsA significantly inhibited SSa-induced loss of mitochondrial transmembrane potential and moderately inhibited SSa-induced cell death. SSa treatment also enhanced the activities of caspase-2 and caspase-8, Bid cleavage, and the conformational activation of Bax. Additionally, SSa-induced apoptosis was inhibited by both the selective caspase-2 inhibitor z-VDVAD-fmk and the selective caspase-8 inhibitor z-IETD-fmk and also by si-RNAs against caspase-2 and caspase-8. The selective caspase-9 inhibitor, z-LEHD-fmk, also inhibited SSa-induced apoptosis, albeit to a lesser extent compared to z-VDVAD-fmk and z-IETD-fmk, indicating that both mitochondria-dependent and mitochondria-independent pathways are associated with SSa-induced apoptosis. Both z-VDVAD-fmk and z-IETD-fmk significantly attenuated the colony-inhibiting effect of SSa. Moreover, inhibition of caspase-2 activation by the pharmacological inhibitor z-VDVAD-fmk, or by knockdown of protein levels using a si-RNA, suppressed SSa-induced caspase-8 activation, Bid cleavage, and the conformational activation of Bax. Although caspase-8 is an initiator caspase like caspase-2, the inhibition of caspase-8 activation by knockdown using a si-RNA did not suppress SSa-induced caspase-2 activation. Altogether, our results suggest that sequential activation of caspase-2 and caspase-8 is a critical step in SSa-induced apoptosis.

2649 related Products with: Sequential caspase-2 and caspase-8 activation is essential for saikosaponin a-induced apoptosis of human colon carcinoma cell lines.

Active Human Caspase 825 Cell Meter™ Caspase 9 A Active Human Caspase 125 Caspase 1, human recombin Active Human Caspase 2100 Active Human Caspase 225 Caspase 2, human recombin Active Human Caspase 325 Caspase 3, human recombin Caspase-4, human recombin Active Human Caspase 525 Caspase 5, human recombin

Related Pathways

paperclip

#20661774   2010/12/01 Save this To Up

Ouabain-induced apoptosis and Rho kinase: a novel caspase-2 cleavage site and fragment of Rock-2.

Ouabain, a specific Na+/K+-ATPase inhibitor, has recently been identified as a mammalian hormone. Its elevated concentrations in human plasma have also been associated with pathogenesis of several diseases. Recent studies have shown that ouabain induces aponecrotic cell death in a cell-type- and dose-dependent manner. However, the exact mechanism of ouabain-induced cell death is not fully understood. The Rho GTPase effectors Rho kinases-1 and -2 (Rock-1 and Rock-2) which play central roles in the organization of the actin cytoskeleton, involve in several models of apoptosis. In this study, we investigated the possible involvement of Rocks in ouabain-induced human umbilical vein endothelial cell (HUVEC) apoptosis. Ouabain treatment resulted in loss of cell-cell and cell-substratum adhesion and apoptotic blebbing. Pretreatment of cells with Y-27632, a specific Rock inhibitor, resulted in the inhibition of cell-to-cell detachment and formation of membrane blebs. However, Y-27632 did not prevent ouabain-induced cell-substratum detachment. Instead, treatment with Y-27632 actually accelerated this process. Ouabain treatment induced cleavage of Rock-1 and Rock-2, which was prevented by caspase-3 and caspase-2 specific inhibitors z-DEVD-fmk and z-VDVAD-fmk, respectively. Ouabain-induced Rock-2 cleavage generated a fragment of approximately 140 kDa corresponding to the consensus sequence of caspase-2 on the carboxy terminus of Rock-2. Although it has been previously shown that Rock-2 was cleaved by caspase-2, we have identified here a novel cleavage site and fragment of Rock-2. Our data indicate that ouabain induces both Rock-1 and Rock-2 cleavage via caspase-dependent mechanisms and provide evidence that Rocks are involved in ouabain-induced cell-to-cell detachment and apoptosis.

2231 related Products with: Ouabain-induced apoptosis and Rho kinase: a novel caspase-2 cleavage site and fragment of Rock-2.

Rabbit Anti-Human Androge Cell Meter™ Caspase 9 A 17β-Acetoxy-2α-bromo-5 5α-N-Acetyl-2'H-androst- 5α-N-Acetyl-2'H-androst- 3-O-Acetyl 5,14-Androstad 3-O-Acetyl-17-O-tert-buty Androsta-1,4,6-triene-3,1 (3β)-Androsta-5,16-diene Androst-4-ene-3,6,17-trio (5α)-Androstane-3,11,17- 19 Hydroxy 4 androstene 3

Related Pathways

paperclip

#20143425   2010/05/17 Save this To Up

Caspases-2 and -8 are involved in the presenilin1/gamma-secretase-dependent cleavage of amyloid precursor protein after the induction of apoptosis.

The presenilin/gamma-secretase protease cleaves many type-I membrane proteins, including the amyloid beta-protein (Abeta) precursor (APP). Previous studies have shown that apoptosis induces alterations in Abeta production in a caspase-dependent manner. Here, we report that staurosporine (STS)-induced apoptosis induces caspase-8 and/or-2-dependent gamma-secretase activation. Blocking of caspase activity with caspase-8 inhibitor z-IETD-fmk, and caspase-2 inhibitor z-VDVAD-fmk reduced Abeta production by STS in H4 cells expressing the Swedish mutant of APP (HSW) or APP-C99 (H4-C99). There was no inhibitory effect of other caspases (-1, -3, -5, -6, -9) on Abeta production by STS. This finding was further supported by evidence that siRNA transfection, depleting caspase-2 or -8 levels, lowered Abeta production in HSW and H4-C99 cells without affecting expression of APP or gamma-secretase complex. In addition, Abeta production by STS was decreased by JNK inhibitors, SP600125. These results suggest that caspase-2 and/or -8 is involved in presenilin/gamma-secretase activation and Abeta production in apoptosis.

1520 related Products with: Caspases-2 and -8 are involved in the presenilin1/gamma-secretase-dependent cleavage of amyloid precursor protein after the induction of apoptosis.

Apoptosis Phospho-Specifi MultiGene Gradient therm Anti-BACE-1 (Memapsin-2, to BACE-1 (Memapsin-2, B Anti-BACE-1 (Memapsin-2, Amyloid Precursor Protein Amyloid Precursor Protein Amyloid Precursor Protein Amyloid Precursor Protein Human Macrophage Inflamma Human Macrophage Inflamma Human Gro g Macrophage In

Related Pathways

paperclip

#20026395   2010/02/15 Save this To Up

Goniothalamin-induced oxidative stress, DNA damage and apoptosis via caspase-2 independent and Bcl-2 independent pathways in Jurkat T-cells.

Goniothalamin (GTN) isolated from Goniothalamus sp. has been demonstrated to induce apoptosis in a variety of cancer cell lines including Jurkat T leukemia cells. However, the mechanism of GTN-induced apoptosis upstream of mitochondria is still poorly defined. In this study, GTN caused a decrease in GSH with an elevation of reactive oxygen species as early as 30 min and DNA damage as assessed by Comet assay. Analysis using topoisomerase II processing of supercoiled pBR 322 DNA showed that GTN caused DNA damage via a topoisomerase II-independent pathway suggesting that cellular oxidative stress may contribute to genotoxicity. A 12-fold increase of caspase-2 activity was observed in GTN-treated Jurkat cells after 4h treatment and this was confirmed using Western blotting. Although the caspase-2 inhibitor Z-VDVAD-FMK inhibited the proteolytic activity of caspase-2, apoptosis ensued confirming that caspase-2 activity was not crucial for GTN-induced apoptosis. However, GTN-induced apoptosis was completely abrogated by N-acetylcysteine further confirming the role of oxidative stress. Since cytochrome c release was observed as early as 1h without any appreciable change in Bcl-2 protein expression, we further investigated whether overexpression of Bcl-2 confers resistance in GTN-induced cytotoxicity. Using a panel of Jurkat Bcl-2 transfectants, GTN cytotoxicity was not abrogated in these cells. In conclusion, GTN induces DNA damage and oxidative stress resulting in apoptosis which is independent of both caspase-2 and Bcl-2.

1798 related Products with: Goniothalamin-induced oxidative stress, DNA damage and apoptosis via caspase-2 independent and Bcl-2 independent pathways in Jurkat T-cells.

Human Epstein-Barr Virus Caspase-3 Inhibitor Z-DEV Caspase-3 Inhibitor Z-DEV Caspase 3 Inhibitor Z DEV Caspase 3 Inhibitor Z DEV Caspase-Family Inhibitor Caspase-Family Inhibitor Caspase Family Inhibitor Caspase Family Inhibitor Caspase-6 Inhibitor Z-VEI Caspase-6 Inhibitor Z-VEI Caspase 6 Inhibitor Z VEI

Related Pathways

paperclip

#19714247   2009/08/28 Save this To Up

Caspase-2 mediated apoptotic and necrotic murine macrophage cell death induced by rough Brucella abortus.

Brucella species are Gram-negative, facultative intracellular bacteria that cause zoonotic brucellosis. Survival and replication inside macrophages is critical for establishment of chronic Brucella infection. Virulent smooth B. abortus strain 2308 inhibits programmed macrophage cell death and replicates inside macrophages. Cattle B. abortus vaccine strain RB51 is an attenuated rough, lipopolysaccharide O antigen-deficient mutant derived from smooth strain 2308. B. abortus rough mutant RA1 contains a single wboA gene mutation in strain 2308. Our studies demonstrated that live RB51 and RA1, but not strain 2308 or heat-killed Brucella, induced both apoptotic and necrotic cell death in murine RAW264.7 macrophages and bone marrow derived macrophages. The same phenomenon was also observed in primary mouse peritoneal macrophages from mice immunized intraperitoneally with vaccine strain RB51 using the same dose as regularly performed in protection studies. Programmed macrophage cell death induced by RB51 and RA1 was inhibited by a caspase-2 inhibitor (Z-VDVAD-FMK). Caspase-2 enzyme activation and cleavage were observed at the early infection stage in macrophages infected with RB51 and RA1 but not strain 2308. The inhibition of macrophage cell death promoted the survival of rough Brucella cells inside macrophages. The critical role of caspase-2 in mediating rough B. abortus induced macrophage cell death was confirmed using caspase-2 specific shRNA. The mitochondrial apoptosis pathway was activated in macrophages infected with rough B. abortus as demonstrated by increase in mitochondrial membrane permeability and the release of cytochrome c to cytoplasm in macrophages infected with rough Brucella. These results demonstrate that rough B. abortus strains RB51 and RA1 induce apoptotic and necrotic murine macrophage cell death that is mediated by caspase-2. The biological relevance of Brucella O antigen and caspase-2-mediated macrophage cell death in Brucella pathogenesis and protective Brucella immunity is discussed.

2524 related Products with: Caspase-2 mediated apoptotic and necrotic murine macrophage cell death induced by rough Brucella abortus.

Cell Meter™ Live Cell C Cell Meter™ Live Cell C Cell Meter™ Live Cell C Cell Meter™ Live Cell C Cell Meter™ Live Cell C Cell Meter™ Live Cell C Cell Meter™ Live Cell C Cell Meter™ Caspase 9 A Cell Meter™ Apoptotic a Cell Meter™ Apoptotic a Rabbit Anti-Cell death in Rabbit Anti-Cell death in

Related Pathways