Only in Titles

           Search results for: Caspase 3 Substrate DEVD pNA   

paperclip

#28888538   2017/09/10 Save this To Up

The self-activation and LPS binding activity of executioner caspase-1 in oyster Crassostrea gigas.

Executioner caspases play important roles in apoptotic pathway and immune defense, which is considered to coordinate the execution phase of apoptosis by cleaving multiple structural and repair proteins. However, the knowledge about the activation mechanism and function of executioner caspases in mollusks, especially marine bivalves is limited. In the present study, the full-length cDNA sequence of caspase-1 was cloned from oyster Crassostrea gigas, which encoded a predicted protein containing a small subunit (p10) and large subunit (p20) with a conserved caspase active site QACRG similar to that of human executioner caspase-3/7. SDS-polyacrylamide gel electrophoresis and western blot results demonstrated that the CgCaspase-1 zymogen could be cleaved into p20p10, p20 and p10 in prokaryotic expression systems, and the C-terminus of CgCaspase-1 was also cleaved into p20 and p10. Both of the recombinant CgCaspase-1 (rCgCaspase-1) and the C-terminus of CgCaspase-1 (rCgCaspase-1-C) exhibited similar caspase activity towards proteolytic substrate Ac-DMQD-pNA and Ac-DEVD-pNA. However, the recombinant N-terminus of CgCaspase-1 (rCgCaspase-1-N) did not display any caspase activity. Moreover, the inhibitor of both caspase-3/7 and pan-caspase could significantly inhibit the proteolytic activity of rCgCaspase-1. The strong binding activities towards lipopolysaccharide (LPS) of both rCgCaspase-1 and rCgCaspase-1-C were revealed by ELISA techniques and western blotting. A high level of CgCaspase-1 mRNA transcripts was detected in the gills and hemocytes by quantitative real-time PCR, and the CgCaspase-1 protein was mainly located in the cytoplasm of oyster hemocytes by immunofluorescence assay. These results collectively suggested that CgCaspase-1 was a homolog of executioner caspase-3/7, which could be self-activated through proteolytic cleavage in prokaryotic expression systems, and performed caspase and LPS binding activities in the innate immune response of oyster.

1664 related Products with: The self-activation and LPS binding activity of executioner caspase-1 in oyster Crassostrea gigas.

Caspase-3 Inhibitor Z-DEV Caspase-3 Inhibitor Z-DEV Caspase 3 Inhibitor Z DEV Caspase 3 Inhibitor Z DEV Caspase-Family Inhibitor Caspase-Family Inhibitor Caspase Family Inhibitor Caspase Family Inhibitor Caspase-6 Inhibitor Z-VEI Caspase-6 Inhibitor Z-VEI Caspase 6 Inhibitor Z VEI Caspase 6 Inhibitor Z VEI

Related Pathways

paperclip

#28159694   2017/02/04 Save this To Up

Molecular cloning, characterization and expression analysis of caspase-3 from the oriental river prawn, Macrobrachium nipponense when exposed to acute hypoxia and reoxygenation.

Caspases are present in the cytosol as inactive proenzymes but become activated when apoptosis is initiated, playing an essential role at various stages of the process. In this study, a caspase-3 (Mncaspase-3c) was cloned from gill of the oriental river prawn Macrobrachium nipponense by reverse-transcription polymerase chain reaction and rapid amplification of cDNA ends, and its properties were characterized. The 1730-bp cDNA contained an open reading frame of 1566 bp, a 123-bp 5'-untranslated region (UTR), and a 41-bp 3'-UTR containing a poly(A) tail. The molecular mass of the deduced amino acid (aa) sequence (521 aa) was 56.3 kDa with an estimated pI of 5.01. The MnCaspase-3c sequence contained a predicted caspase family p20 domain and a caspase family p10 domain at positions 236-367 and 378-468 respectively. Recombinant MnCaspase-3c protein was expressed in Escherichia coli and purified. In vitro activity assays indicated that the recombinant MnCaspase-3c hydrolyzed the substrate Ac-DEVD-pNA, suggesting a physiological role as a caspase-3. Caspase-3c gene transcripts were distributed in all M. nipponense tissues tested by quantitative RT-PCR, being especially abundant in hemocytes. Comet assays in gill tissues showed an obvious time-dependent response to hypoxia. Furthermore, Mncaspase-3c, at both the mRNA and protein levels, was demonstrated to participate in the apoptotic process in gill after stimulation by acute hypoxia. Overall, these results indicate that hypoxia triggers apoptosis in shrimp gill tissues.

2875 related Products with: Molecular cloning, characterization and expression analysis of caspase-3 from the oriental river prawn, Macrobrachium nipponense when exposed to acute hypoxia and reoxygenation.

AZD-3514 Mechanisms: Andr 17β-Acetoxy-2α-bromo-5 3-O-Acetyl 5,14-Androstad 3-O-Acetyl-17-O-tert-buty 3β-O-Acetyl-androsta-5,1 5α-Androstan-3β-ol � ∆1-Androstene-3α,17β- ∆1-Androstene-3α,17β- ∆1-Androstene-3β,17β- Androsta-1,4,6-triene-3,1 (3β)-Androsta-5,16-diene Androsta-3,5,16-trien-17-

Related Pathways

  •  
  • No related Items
paperclip

#26993662   2016/05/13 Save this To Up

Caspase-3 serves as an intracellular immune receptor specific for lipopolysaccharide in oyster Crassostrea gigas.

Apoptosis is a form of programmed cell death process controlled by a family of cysteine proteases called caspases, which plays a crucial role in the immune system homeostasis. The apoptosis and the detailed regulation mechanism have been well studied in vertebrate, but the information in lower animals, especially invertebrates, is still very limited. In the present study, Caspase-3 in the Pacific oyster Crassostrea gigas (designated CgCaspase-3) was enriched by lipopolysaccharide (LPS) affinity chromatography and further identified by MALDI-TOF/TOF-mass spectrometry. The binding activity of CgCaspase-3 to LPS was confirmed by enzyme-linked immunosorbent assay, and surface plasmon resonance analysis revealed its high binding specificity and moderate binding affinity (KD = 1.08 × 10(-6) M) to LPS. The recombinant CgCaspase-3 exhibited high proteolytic activity to substrate Ac-DEVD-pNA and relatively weak activity to substrate Ac-DMQD-pNA and Ac-VDQQD-pNA. The binding of CgCaspase-3 to LPS significantly inhibited its proteolytic activity toward AC-DEVD-pNA in vitro. The over-expression of CgCaspase-3 leaded to the phosphatidylserine exposure on the external plasma membrane and the cleavage of poly (ADP-ribose) polymerase, which reduced cell viability, and finally induced cell apoptosis. But the cell apoptosis mediated by CgCaspase-3 in vivo was significantly inhibited by the treatment of LPS. These results collectively indicated that CgCaspase-3 could serve as an intracellular LPS receptor, and the interaction of LPS with CgCaspase-3 specifically inhibited the cell apoptosis induced by CgCaspase-3.

1987 related Products with: Caspase-3 serves as an intracellular immune receptor specific for lipopolysaccharide in oyster Crassostrea gigas.

IGF-1R Signaling Phospho- Insulin Receptor Phospho- Nuclear Membrane Receptor T-Cell Receptor Signaling Cytokine (Mouse) Antibody Cytokine (Mouse) Antibody Cytokine (Rat) Antibody A Th1 Th2 Th17 (Human) Anti Chemokine (Human) Antibod Cytokine (Human) Antibody Cytokine (Mouse) Antibody Cytokine (Mouse) Antibody

Related Pathways

paperclip

#26812112   2016/04/08 Save this To Up

Characterization and cytotoxic activity of apoptosis-inducing pierisin-5 protein from white cabbage butterfly.

In this study, caspase-dependent apoptosis-inducing pierisin-5 gene was identified and characterized from cabbage white butterfly, Pieris canidia. A thousand-fold increase in expression of pierisin-5 gene was observed from second to third instar larvae, gradually decreasing before pupation. Pierisin-5 was purified from the fifth-instar larvae and was found to exhibit cytotoxicity against HeLa and HepG2 human cancer cell lines. Pierisin-5 showed growth inhibition and several morphological changes such as cell shrinkage, chromatin condensation and apoptotic body formation with programmed cell death in HeLa and HepG2 cells. Moreover, DNA fragmentation was observed after gel electrophoresis analysis. Caspase substrate assay showed further cleavage of Ac-DEVD-pNA, suggesting the activation of Caspase-3. Flow cytometry analysis revealed the cell cycle arrest at G1 phase and increased the percentage of apoptotic cells in cancer cell lines treated with pierisin-5. These findings suggest that pierisin-5 could significantly induce apoptosis in cancer cell lines and is mediated by activation of caspase-3 in the mitochondrial pathway. Phylogenetic analysis using pierisin proteins from Pierid butterflies, ADP-ribosylating toxins from bacteria, human, rat, and mouse indicated the possibility of horizontal transfer of pierisin genes from bacteria to butterflies. The single copy of pierisin gene unlike other insect toxin genes also supports lateral transfer.

1470 related Products with: Characterization and cytotoxic activity of apoptosis-inducing pierisin-5 protein from white cabbage butterfly.

Rabbit Anti-Cell death in Rabbit Anti-Cell death in Rabbit Anti-Cell death in Heat Shock Protein 70 (H Human Monocyte Chemotacti Human Monocyte Chemotacti Human Macrophage Inflamma Human Macrophage Inflamma Human Macrophage Inflamma ReadiLink™ mFluor™ Vi ReadiLink™ mFluor™ Vi Androgen Receptor (Phosph

Related Pathways

paperclip

#25462457   2015/01/20 Save this To Up

Caspase-mediated apoptosis in crustaceans: cloning and functional characterization of EsCaspase-3-like protein from Eriocheir.

The caspase-3-like gene was cloned from Eriocheir sinensis, and its properties were characterized to identify the biological implications of this caspase in apoptosis in crab. Its deduced full-length protein sequence consists of 462 amino acid residues, including the prodomain and the large and small subunits. Moreover, several residues known to be critical in the caspase-3 catalytic center and binding pocket, as well as the active site pentapeptide motif Q(220)ACRG(224), were identically present in the deduced EsCaspase-3-like protein. Subsequently, the recombinant EsCaspase-3-like (rEsCaspase-3-like) protein was expressed from Escherichia coli and obtained via affinity purification. Results of the in vitro enzymatic activity assays indicated that the rEsCaspase-3-like protein is capable of hydrolyzing the substrate Ac-DEVD-pNA, suggesting a functional role in physiology. EsCaspase-3-like gene transcripts were found to be widely distributed in all tissues as detected by quantitative RT-PCR, being especially abundant in hemocytes and comparatively rare in muscles. Furthermore, EsCaspase-3-like, at both the mRNA and protein levels, was demonstrated to participate in the apoptotic process after stimulation by different pathogen-associated molecular patterns (PAMPs) in hemocytes. In conclusion, our findings suggest that the EsCaspase-3-like protein functions as an effector caspase and contributes to immune responses against pathogens.

2718 related Products with: Caspase-mediated apoptosis in crustaceans: cloning and functional characterization of EsCaspase-3-like protein from Eriocheir.

Apoptosis Phospho-Specifi HIV 1 intergase antigen. Human Macrophage Inflamma Human Macrophage Inflamma Human Macrophage Inflamma Human Macrophage Inflamma Human Macrophage Inflamma Human Gro g Macrophage In Caspase-3 Inhibitor Z-DEV Caspase-3 Inhibitor Z-DEV Caspase 3 Inhibitor Z DEV Caspase 3 Inhibitor Z DEV

Related Pathways

paperclip

#24491540   2014/03/03 Save this To Up

BmICE-2 is a novel pro-apoptotic caspase involved in apoptosis in the silkworm, Bombyx mori.

In this study we identified a potential pro-apoptotic caspase gene, Bombyx mori(B. mori)ICE-2 (BmICE-2) which encoded a polypeptide of 284 amino acid residues, including a (169)QACRG(173) sequence which surrounded the catalytic site and contained a p20 and a p10 domain. BmICE-2 expressed in Escherichia coli (E. coli) exhibited high proteolytic activity for the synthetic human initiator caspase-9 substrates Ac-LEHD-pNA, but little activity towards the effector caspase-3 substrates Ac-DEVD-pNA. When BmICE-2 was transiently expressed in BmN-SWU1 silkworm B. mori cells, we found that the high proteolytic activity for Ac-LEHD-pNA triggered caspase-3-like protease activity resulting in spontaneous cleavage and apoptosis in these cells. This effect was not replicated in Spodoptera frugiperda 9 cells. In addition, spontaneous cleavage of endogenous BmICE-2 in BmN-SWU1 cells could be induced by actinomycin D. These results suggest that BmICE-2 may be a novel pro-apoptotic gene with caspase-9 activity which is involved apoptotic processes in BmN-SWU1 silkworm B. mori cells.

1953 related Products with: BmICE-2 is a novel pro-apoptotic caspase involved in apoptosis in the silkworm, Bombyx mori.

Caspase-3 Inhibitor Z-DEV Caspase-Family Inhibitor Caspase-6 Inhibitor Z-VEI Caspase-1 Inhibitor Z-YVA Caspase-8 Inhibitor Z-IET Caspase-2 Inhibitor Z-VDV Caspase-9 Inhibitor Z-LEH Caspase-12 Inhibitor Z-AT Caspase-12 Inhibitor Z-AT Caspase 12 Inhibitor Z AT Caspase-5 Inhibitor Z-WEH Caspase-4 Inhibitor Z-LEV

Related Pathways

paperclip

#22554851   2012/05/28 Save this To Up

Caspase 3 from rock bream (Oplegnathus fasciatus): genomic characterization and transcriptional profiling upon bacterial and viral inductions.

Caspase 3 is a prominent mediator of apoptosis and participates in the cell death signaling cascade. In this study, caspase 3 was identified (Rbcasp3) and characterized from rock bream (Oplegnathus fasciatus). The full-length cDNA of Rbcasp3 is 2683 bp and contains an open reading frame of 849 bp, which encodes a 283 amino acid protein with a calculated molecular mass of 31.2 kDa and isoelectric point of 6.31. The amino acid sequence resembles the conventional caspase 3 domain architecture, including crucial amino acid residues in the catalytic site and binding pocket. The genomic length of Rbcasp3 is 7529 bp, and encompasses six exons interrupted by five introns. Phylogenetic analysis affirmed that Rbcasp3 represents a complex group in fish that has been shaped by gene duplication and diversification. Many putative transcription factor binding sites were identified in the predicted promoter region of Rbcasp3, including immune factor- and cancer signal-inducible sites. Rbcasp3, excluding the pro-domain, was expressed in Escherichia coli. The recombinant protein showed a detectable activity against the mammalian caspase 3/7-specific substrate DEVD-pNA, indicating a functional role in physiology. Quantitative real time PCR assay detected Rbcasp3 expression in all examined tissues, but with high abundance in blood, liver and brain. Transcriptional profiling of rock bream liver tissue revealed that challenge with lipopolysaccharides (LPS) caused prolonged up-regulation of Rbcasp3 mRNA whereas, Edwardsiella tarda (E. tarda) stimulated a late-phase significant transcriptional response. Rock bream iridovirus (RBIV) up-regulated Rbcasp3 transcription significantly at late-phase, however polyinosinic-polycytidylic acid (poly(I:C)) induced Rbcasp3 significantly at early-phase. Our findings suggest that Rbcasp3 functions as a cysteine-aspartate-specific protease and contributes to immune responses against bacterial and viral infections.

1658 related Products with: Caspase 3 from rock bream (Oplegnathus fasciatus): genomic characterization and transcriptional profiling upon bacterial and viral inductions.

AZD-3514 Mechanisms: Andr 17β-Acetoxy-2α-bromo-5 3-O-Acetyl 5,14-Androstad 3-O-Acetyl-17-O-tert-buty 3β-O-Acetyl-androsta-5,1 5α-Androstan-3β-ol � ∆1-Androstene-3α,17β- ∆1-Androstene-3α,17β- ∆1-Androstene-3β,17β- Androsta-1,4,6-triene-3,1 (3β)-Androsta-5,16-diene Androsta-3,5,16-trien-17-

Related Pathways

paperclip

#21296132   2011/04/18 Save this To Up

T-2 toxin induces apoptosis in ovarian granulosa cells of rats through reactive oxygen species-mediated mitochondrial pathway.

To investigate the reproductive toxicity and cytotoxicity of T-2 toxin, which is a mycotoxin, and to explore its potential apoptotic induction mechanism.

2573 related Products with: T-2 toxin induces apoptosis in ovarian granulosa cells of rats through reactive oxygen species-mediated mitochondrial pathway.

MarkerGeneTM Live Cell Fl CD41 Integrin alpha 2b an Interleukin-24 antibody S T-2 Toxin Mycotoxins ELIS Apoptosis antibody array AKT PKB Signaling Phospho Apoptosis Phospho-Specifi Cancer Apoptosis Phospho- ErbB Her Signaling Phosph ERK Signaling Phospho-Spe IGF-1R Signaling Phospho- Insulin Receptor Phospho-

Related Pathways

paperclip

#21288491   2011/03/07 Save this To Up

Molecular cloning and characterization of caspase-3 in large yellow croaker (Pseudosciaena crocea).

Caspases-3, a member of the cysteine-aspartic acid protease (caspase) family, plays critical roles in the execution of apoptotic pathway. In this study, a caspase-3 homologue was cloned and characterized from large yellow croaker (Pseudosciaena crocea). The full-length cDNA of large yellow croaker caspase-3 (Lyccasp3) is 2222bp with an open reading frame of 858 bp encoding a polypeptide of 285 amino acids (aa). Lyccasp3 exhibited a conserved caspase-3 architecture including a prodomain, a large subunit and a small subunit. Moreover, several residues known to be critical in the caspase-3 catalytic centre and binding pocket, as well as the active-site pentapeptide motif Q(172)ACRG(176) were present in the deduced Lyccasp3. Recombinant Lyccasp3 (rLyccasp3) produced in Escherichia coli exhibited obvious hydrolyzing activity against synthetic peptide substrate Ac-DEVD-pNA. The Lyccasp3 was constitutively expressed in all the tissues examined, although the expression levels varied from tissue to tissue. Real-time PCR analysis revealed that Lyccasp3 transcript in spleen and kidney was quickly increased after stimulation with either poly (I:C) or inactivated trivalent bacterial vaccine. Enzyme activities of Lyccasp3 were also up-regulated in these two tissues post-stimulation when analyzed by hydrolyzing activity assay. Since the activity of large yellow croaker caspase-9 (Lyccasp9) in the spleen and kidney also increased when the fish was stimulated with the poly(I:C) or bacterial vaccine [1], we therefore proposed that the intrinsic apoptotic pathway, which is initiated by caspase-9 and executed by caspase-3, was activated during the immune response induced by poly(I:C) or bacterial vaccine in large yellow croaker.

2432 related Products with: Molecular cloning and characterization of caspase-3 in large yellow croaker (Pseudosciaena crocea).

Interleukin-34 IL34 (N-t Interleukin-34 IL34 anti Cytokeratin, High Molecu Cytokeratin, High Molecu Cytokeratin, High Molecu Sterile filtered mouse s DNA (cytosine 5) methyltr Human Interleukin-33 IL-3 Human Interleukin-32 alph Caspase-3 Inhibitor Z-DEV Caspase-3 Inhibitor Z-DEV Caspase 3 Inhibitor Z DEV

Related Pathways

paperclip

#20680337   2010/11/09 Save this To Up

Toxoplasma gondii infection inhibits the mitochondrial apoptosis through induction of Bcl-2 and HSP70.

Heat-shock protein 70 (HSP70) is highly expressed in Toxoplasma gondii-infected cells. However, the role of this protein is not well understood, especially during apoptosis. This study addresses the mechanism behind the antiapoptotic chaperone activity of HSP70 in Toxoplasma-infected host cells using a human macrophage cell line, THP-1 by Western blot, DNA fragmentation assay, immunoprecipitation, and a caspase-3/7 activity assay based on cleavage of the colorimetric substrate DEVD-pNA. Apoptosis induced by arsenic trioxide (As(2)O(3)) was inhibited in T. gondii-infected THP-1 cells, but not in uninfected cells. Without As(2)O(3) induction of apoptosis, T. gondii infection caused increased expression of Bcl-2 and HSP70, but not caspase-3. However, active form caspase-3 levels were lower in As(2)O(3)-treated infected cells as compared with As(2)O(3)-treated uninfected cells. Bcl-2 expression in As(2)O(3)-treated infected cells was similar to that in cells infected with T. gondii. Translocation of apoptosis-inducing factor (AIF) and release of cytochrome c from mitochondria were inhibited in As(2)O(3)-treated infected cells as compared with As(2)O(3)-treated uninfected cells. Increased parasite loads in Toxoplasma-infected macrophages caused higher HSP70 and Bcl-2 expression in whole-cell extracts and fractionated components, respectively. However, expression of AIF and cytochrome c was unaffected. Toxoplasma dose-dependently inhibited caspase-3 activation, thus revealing an anti-apoptotic parasite activity on cytochrome c-mediated caspase activation in subcellular components. In addition, immunoprecipitation analysis suggested that HSP70 is capable of binding to the pro-apoptotic factors AIF and Apaf-1, but not to cytochrome c or procaspase-9. Taken together, these data demonstrate that T. gondii infection inhibits mitochondrial apoptosis through overproduction of anti-apoptotic Bcl-2 as well as HSP70, which are increased parasite loads dependently.

1395 related Products with: Toxoplasma gondii infection inhibits the mitochondrial apoptosis through induction of Bcl-2 and HSP70.

HSP70 1 BCL XL Toxoplasma gondii MIC 3 r Toxoplasma gondii P24 (GR Toxoplasma gondii P29 (GR Toxoplasma gondii P30 (SA TOXOPLASMA GONDII Culture Rabbit Anti-Human Androge Rabbit Anti-Human HSP70 A Cell Meter™ Caspase 9 A Recombinant E. coli HSP70 Recombinant E. coli HSP70

Related Pathways