Only in Titles

           Search results for: Caspase 8 Substrate IETD pNA   

paperclip

#17658284   2007/11/05 Save this To Up

Specific inhibition of caspase-8 and -9 in CHO cells enhances cell viability in batch and fed-batch cultures.

In an attempt to investigate the molecular mechanism that leads to apoptotic death in Chinese hamster ovary (CHO) cells in batch and fed-batch cultures, we cloned caspase-2, -8 and -9 from a CHO cDNA library. Recombinant Chinese hamster caspase-2 and -9 expressed in Escherichia coli show highest activities towards commercial peptide substrates Ac-VDVAD-pNA and Ac-LEHD-pNA, the designated commercial substrates for human caspase-2 and -9, respectively. However, Chinese hamster caspase-8 shows a broad specificity profile and it cleaves the caspase-9 substrate more efficiently than it cleaves the caspase-8 substrate. The commercially available fluoromethyl ketone type of caspase inhibitors, such as Z-LEHD-fmk, Z-IETD-fmk, Z-VDVAD-fmk and Z-DEVD-fmk, were shown to completely lack specificity in inhibiting these caspases. The reversible aldehyde form of inhibitors for human caspase-8 and -9, Ac-LEHD-CHO and Ac-IETD-CHO, are equally efficient in inhibiting Chinese hamster caspase-8. Therefore, the wildly used method of utilizing the "caspase-specific" inhibitors to track the role of individual caspases in dying cells can be inaccurate and thus misleading. As an alternative, we stably expressed dominant negative (DN) mutants of Chinese hamster caspase-2, -8 and -9 to specifically inhibit these enzymes in CHO cells. Our results showed that inhibition of either endogenous caspase-8 or caspase-9 enhanced the viability of the CHO cells in both batch and fed-batch suspension cultures, but the inhibition of caspase-2 had minimal effects. These results suggest that caspase-8 and -9 are possibly involved in the apoptotic cell death in batch and fed-batch cultures of CHO cells, whereas caspase-2 is not. These findings can be valuable in the development of strategies for genetically engineering CHO cells to counter apoptotic death in batch and fed-batch cultures.

2249 related Products with: Specific inhibition of caspase-8 and -9 in CHO cells enhances cell viability in batch and fed-batch cultures.

GLP 1 ELISA Kit, Rat Gluc GLP 2 ELISA Kit, Rat Prog Glucagon ELISA KIT, Rat G Leptin ELISA Kit, Rat Lep anti HSV (II) gB IgG1 (mo anti HCMV IE pp65 IgG1 (m anti HCMV gB IgG1 (monocl Macrophage Colony Stimula Macrophage Colony Stimula Cultrex 96 Well Laminin I Cultrex 96 Well Collagen Cultrex 96 Well Collagen

Related Pathways

paperclip

#11888206   2002/03/12 Save this To Up

Expression, preparation, and high-throughput screening of caspase-8: discovery of redox-based and steroid diacid inhibition.

Because of the intimate role of caspase-8 in apoptosis signaling pathways from FAS, TNFR1, and other death receptors, the enzyme is a potentially important therapeutic target. We have generated an Escherichia coli expression construct for caspase-8 in which a His-tag sequence is inserted ahead of codon 217 of caspase-8. The strain produced a significant amount of soluble His-tagged 31-kDa inactive single-chain enzyme precursor. This 31-kDa protein could be purified to 98% purity. Hydroxyapatite resolved the enzyme into two species, one with the appropriate 31,090 relative mass and the other with 178 units additional mass. The latter proved to result from E. coli-based modification of the His-tag with one equivalent of glucono-1,5-lactone. The purified proteins could be activated by autoproteolysis to the appropriate 19- plus 11-kDa enzyme by the addition of dithiothreitol in appropriate buffer conditions. This yielded an enzyme with specific activity of 4-5 units/mg against 200 microM Ac-IETD-pNA at 25 degrees C. The fully active protein was used in a high-throughput screen for inhibitors of caspase-8. A preliminary robustness screen demonstrated that caspase-8 is susceptible to reactive oxygen-based inactivation in the presence of dithiothreitol (DTT) but not in the presence of cysteine. Investigation into the mechanism of this inactivation showed that quinone-like compounds were reduced by DTT establishing a reactive oxygen generating redox cycle the products of which (likely H(2)O(2)) inactivated the enzyme. A new class of caspase-8 inhibitors, steroid-derived diacids, with affinity in the low micromolar range were discovered in the refined screen. Structure--activity investigation of the inhibitors showed that both the steroid template and the acid moieties were required for activity.

2365 related Products with: Expression, preparation, and high-throughput screening of caspase-8: discovery of redox-based and steroid diacid inhibition.

MarkerGene™ Multiple Dr Androgen Receptor (Phosph Androgen Receptor (Phosph Rabbit Anti-Human Androge Rabbit Anti-Human Androge Androgen Receptor (Ab 650 AZD-3514 Mechanisms: Andr 17β-Acetoxy-2α-bromo-5 (5α,16β)-N-Acetyl-16-[2 (5α,16β)-N-Acetyl-16-ac 5α-N-Acetyl-2'H-androst- 5α-N-Acetyl-2'H-androst-

Related Pathways

paperclip

#10733893   2000/06/07 Save this To Up

Caspase 8: an efficient method for large-scale autoactivation of recombinant procaspase 8 by matrix adsorption and characterization of the active enzyme.

A gene coding for a truncated form of human procaspase 8 has been cloned and expressed in Escherichia coli. This construct contains M(206) through D(479) of human procaspase 8, preceded by an N-terminal polyhistidine tag. The recombinant protein, containing 286 amino acids, was expressed in high yield in the form of inclusion bodies (IB). The IB were solubilized in guanidinium chloride and dialyzed against 50% acetic acid. The solution was mixed with 9 volumes of H(2)O and then rapidly diluted from the acidic medium to one containing 1.0 M Tris, pH 8.0, and 5 mM DTT. SDS-PAGE analysis of the soluble, dilute protein solution (20-30 microgram of protein/ml) showed a single 33-kDa band corresponding to the nonprocessed, inactive procaspase 8. Concentration of the dilute protein to levels as high as 2 mg/ml resulted in only modest (1-10%) autocatalytic conversion to the 19- and 11-kDa polypeptide subunits which are characteristic of the activated enzyme. Further concentration of these protein solutions to a near-dry state on the ultrafiltration membrane, followed by washing of the membrane with buffer, led to extracts containing high yields of enzyme showing a specific activity of 8.43 micromol/min/mg against the chromogenic substrate Ac-IETD-pNA. SDS-PAGE, protein sequencing, and mass spectrometric analysis of these extracts showed complete conversion of the 33-kDa procaspase 8 to the 19- and 11-kDa subunits of activated caspase 8. This method allows for preparation of 100-mg quantities of highly pure and active recombinant human caspase 8. Enzyme activity was shown to be associated with a heterotetrameric complex that is converted to an inactive dimer upon storage.

1614 related Products with: Caspase 8: an efficient method for large-scale autoactivation of recombinant procaspase 8 by matrix adsorption and characterization of the active enzyme.

HAV VP1 P2A recombinant a Recombinant Viral antige anti HBcAg core IgG2a (mo Active Human Caspase 8100 Active Human Caspase 825 Active Mouse Caspase 8100 Active Mouse Caspase 825 Mouse Anti-Human Matrix M Primary antibody Caspase Caspase-3 (Active) Antibo Caspase 7 (Active) Antibo Caspase 9 (Active) Antibo

Related Pathways