Only in Titles

Search results for: Metabolic physiology and skeletal muscle phenotypes in male and female myoglobin knockout mice.

paperclip

#33969704   2021/05/10 To Up

Metabolic physiology and skeletal muscle phenotypes in male and female myoglobin knockout mice.

Myoglobin (Mb) is a regulator of O bioavailability in type I muscle and heart, at least when tissue O levels drop. Mb also plays a role in regulating cellular nitric oxide (NO) pools. Robust binding of long-chain fatty acids and long-chain acylcarnitines to Mb, and enhanced glucose metabolism in hearts of Mb knockout (KO) mice, suggest additional roles in muscle intermediary metabolism and fuel selection. To evaluate this hypothesis, we measured energy expenditure (EE), respiratory exchange ratio (RER), body weight gain and adiposity, glucose tolerance, and insulin sensitivity in Mb knockout (Mb) and wild-type (WT) mice challenged with a high-fat diet (HFD, 45% of calories). In males ( = 10/genotype) and females ( = 9/genotype) tested at 5-6, 11-12, and 17-18 wk, there were no genotype effects on RER, EE, or food intake. RER and EE during cold (10°C, 72 h), and glucose and insulin tolerance, were not different compared with within-sex WT controls. At ∼18 and ∼19 wk of age, female Mb adiposity was ∼42%-48% higher versus WT females ( = 0.1). Transcriptomics analyses (whole gastrocnemius, soleus) revealed few consistent changes, with the notable exception of a 20% drop in soleus transferrin receptor (Tfrc) mRNA. Capillarity indices were significantly increased in Mb, specifically in Mb-rich soleus and deep gastrocnemius. The results indicate that Mb loss does not have a major impact on whole body glucose homeostasis, EE, RER, or response to a cold challenge in mice. However, the greater adiposity in female Mb mice indicates a sex-specific effect of Mb KO on fat storage and feed efficiency. The roles of myoglobin remain to be elaborated. We address sexual dimorphism in terms of outcomes in response to the loss of myoglobin in knockout mice and perform, for the first time, a series of comprehensive metabolic studies under conditions in which fat is mobilized (high-fat diet, cold). The results highlight that myoglobin is not necessary and sufficient for maintaining oxidative metabolism and point to alternative roles for this protein in muscle and heart.
Kikumi D Ono-Moore, I Mark Olfert, Jennifer M Rutkowsky, Sree V Chintapalli, Brandon J Willis, Michael L Blackburn, D Keith Williams, Juliana O'Reilly, Todd Tolentino, K C Kent Lloyd, Sean H Adams

1775 related Products with: Metabolic physiology and skeletal muscle phenotypes in male and female myoglobin knockout mice.

500 MG100ug25 mg10 mg50 ug 50 mg100ul25 mg96T100ug

Related Pathways

paperclip

#23274598   // To Up

Alterations in osteopontin modify muscle size in females in both humans and mice.

An osteopontin (OPN; SPP1) gene promoter polymorphism modifies disease severity in Duchenne muscular dystrophy, and we hypothesized that it might also modify muscle phenotypes in healthy volunteers.
Eric P Hoffman, Heather Gordish-Dressman, Virginia D McLane, Joseph M Devaney, Paul D Thompson, Paul Visich, Paul M Gordon, Linda S Pescatello, Robert F Zoeller, Niall M Moyna, Theodore J Angelopoulos, Elena Pegoraro, Gregory A Cox, Priscilla M Clarkson

1667 related Products with: Alterations in osteopontin modify muscle size in females in both humans and mice.

4/120 Packing /sleeve/bo96 wellsSize: 1 mL 100 mM x 24/120 Packing /sleeve/bo96 wells4/120 Packing /sleeve/bo100ug Lyophilized1 Set1 Set

Related Pathways

paperclip

#12919935   2003/08/14 To Up

Changes in NO bioavailability regulate cardiac O2 consumption: control by intramitochondrial SOD2 and intracellular myoglobin.

The aim of this study was to investigate the significance of two intracellular scavengers of nitric oxide (NO): 1) superoxide dismutase (SOD) (SOD2) to scavenge intramitochondrial superoxide anion, and 2) cytosolic myoglobin (Mb) in the regulation of tissue O2 consumption. O2 consumption was measured in vitro using a Clark-type O2 electrode. SOD heterozygous mice (SODHZ) (n = 13) and SOD wild-type (SODWT) (n = 5) mice were used. Bradykinin (BK, 10-4 mol/l) reduced O2 consumption by 15% +/- 1 in hearts of SODHZ mice, which was significantly different from SODWT (reduced by 24 +/- 0.4%). Tiron significantly increased the inhibition of O2 consumption by BK in male mice from 15 +/- 1% (n = 13) to 29 +/- 1.2% (n = 4) at 10-4 mol/l concentration (P < 0.05). The effect of carbachol was similar to BK. S-nitroso-N-acetyl penicillamine (SNAP, 10-4 mol/l) reduced O2 consumption by 39 +/- 1.3% in hearts of SODHZ mice, which was not significantly different from SODWT. But at 10-7 mol/l, SNAP caused significantly less inhibition of O2 consumption in SODHZ mice. Mb knockout (MbKO; Mb wild-type n = 6) and (MbWT) mice (n = 6) were also used. Kidney cortex was studied as the negative control because it does not contain Mb. BK (10-4 mol/l) reduced O2 consumption by 32 +/- 2, 29 +/- 1, and 26 +/- 1% in the heart, skeletal muscle, and kidney of MbKO mice, which was also not significantly different from MbWT. SNAP (10-4 mol/l) reduced O2 consumption by 39 +/- 3, 42 +/- 4, and 46 +/- 2% in the heart, skeletal muscle, and kidney of MbKO mice, which was also not significantly different from MbWT. NG-nitro-l-arginine methyl ester (P < 0.05) inhibited the reduction in O2 consumption induced by BK in the MbKO mouse heart (15 +/- 1%), skeletal muscle (17 +/- 1%), and kidney (17 +/- 1%) as in the MbWT mice. These results suggest that the role of Mb as an intracellular NO scavenger is small, and the increase in mitochondrial superoxide in SODHZ mice may cause a decrease NO bioavailability and alter the control of myocardial O2 consumption by NO.
Wei Li, Thomas Jue, John Edwards, Xipping Wang, Thomas H Hintze

2746 related Products with: Changes in NO bioavailability regulate cardiac O2 consumption: control by intramitochondrial SOD2 and intracellular myoglobin.



Related Pathways