Only in Titles

Search results for: Mismatched Uracil Gylcosylase Enzyme Buffer

paperclip

#17576692   2007/06/18 To Up

Different structural states in oligonucleosomes are required for early versus late steps of base excision repair.

Chromatin in eukaryotic cells is folded into higher order structures of folded nucleosome filaments, and DNA damage occurs at all levels of this structural hierarchy. However, little is known about the impact of higher order folding on DNA repair enzymes. We examined the catalytic activities of purified human base excision repair (BER) enzymes on uracil-containing oligonucleosome arrays, which are folded primarily into 30 nm structures when incubated in repair reaction buffers. The catalytic activities of uracil DNA glycosylase (UDG) and apyrimidinic/apurinic endonuclease (APE) digest G:U mismatches to completion in the folded oligonucleosomes without requiring significant disruption. In contrast, DNA polymerase beta (Pol beta) synthesis is inhibited in a major fraction ( approximately 80%) of the oligonucleosome array, suggesting that single strand nicks in linker DNA are far more accessible to Pol beta in highly folded oligonucleosomes. Importantly, this barrier in folded oligonucleosomes is removed by purified chromatin remodeling complexes. Both ISW1 and ISW2 from yeast significantly enhance Pol beta accessibility to the refractory nicked sites in oligonucleosomes. These results indicate that the initial steps of BER (UDG and APE) act efficiently on highly folded oligonucleosome arrays, and chromatin remodeling may be required for the latter steps of BER in intact chromatin.
Shima Nakanishi, Rajendra Prasad, Samuel H Wilson, Michael Smerdon

2459 related Products with: Different structural states in oligonucleosomes are required for early versus late steps of base excision repair.

10 ugcase 100 G96T1 Setcase 1 G

Related Pathways

paperclip

#10608837   // To Up

The RAD2 domain of human exonuclease 1 exhibits 5' to 3' exonuclease and flap structure-specific endonuclease activities.

The RAD2 family of nucleases includes human XPG (Class I), FEN1 (Class II), and HEX1/hEXO1 (Class III) products gene. These proteins exhibit a blend of substrate specific exo- and endonuclease activities and contribute to repair, recombination, and/or replication. To date, the substrate preferences of the EXO1-like Class III proteins have not been thoroughly defined. We report here that the RAD2 domain of human exonuclease 1 (HEX1-N2) exhibits both a robust 5' to 3' exonuclease activity on single- and double-stranded DNA substrates as well as a flap structure-specific endonuclease activity but does not show specific endonuclease activity at 10-base pair bubble-like structures, G:T mismatches, or uracil residues. Both the 5' to 3' exonuclease and flap endonuclease activities require a divalent metal cofactor, with Mg(2+) being the preferred metal ion. HEX1-N2 is approximately 3-fold less active in Mn(2+)-containing buffers and exhibits <5% activity in the presence of Co(2+), Zn(2+), or Ca(2+). The optimal pH range for the nuclease activities of HEX1-N2 is 7.2-8.2. The specific activity of its 5' to 3' exonuclease function is 2.5-7-fold higher on blunt end and 5'-recessed double-stranded DNA substrates compared with duplex 5'-overhang or single-stranded DNAs. The flap endonuclease activity of HEX1-N2 is similar to that of human flap endonuclease-1, both in terms of turnover efficiency (k(cat)) and site of incision, and is as efficient (k(cat)/K(m)) as its exonuclease function. The nuclease activities of HEX1-N2 described here indicate functions for the EXO1-like proteins in replication, repair, and/or recombination that may overlap with human flap endonuclease-1.
B I Lee, D M Wilson

2989 related Products with: The RAD2 domain of human exonuclease 1 exhibits 5' to 3' exonuclease and flap structure-specific endonuclease activities.

100ul100ug Lyophilized100ug Lyophilized 100ul100ug Lyophilized 100ul100ul 100ul1000 Units100ug Lyophilized100ug Lyophilized 100ul

Related Pathways