Only in Titles

           Search results for: Monoclonal Anti-C-Reactive Protein produced in mouse Antibody    

paperclip

#32075945   // Save this To Up

Anti-PD-1 treatment impairs opioid antinociception in rodents and nonhuman primates.

Emerging immunotherapies with monoclonal antibodies against programmed cell death protein-1 (PD-1) have shown success in treating cancers. However, PD-1 signaling in neurons is largely unknown. We recently reported that dorsal root ganglion (DRG) primary sensory neurons express PD-1 and activation of PD-1 inhibits neuronal excitability and pain. Opioids are mainstay treatments for cancer pain, and morphine produces antinociception via mu opioid receptor (MOR). Here, we report that morphine antinociception and MOR signaling require neuronal PD-1. Morphine-induced antinociception after systemic or intrathecal injection was compromised in mice. Morphine antinociception was also diminished in wild-type mice after intravenous or intrathecal administration of nivolumab, a clinically used anti-PD-1 monoclonal antibody. In mouse models of inflammatory, neuropathic, and cancer pain, spinal morphine antinociception was compromised in mice. MOR and PD-1 are coexpressed in sensory neurons and their axons in mouse and human DRG tissues. Morphine produced antinociception by (i) suppressing calcium currents in DRG neurons, (ii) suppressing excitatory synaptic transmission, and (iii) inducing outward currents in spinal cord neurons; all of these actions were impaired by PD-1 blockade in mice. Loss of PD-1 also enhanced opioid-induced hyperalgesia and tolerance and potentiates opioid-induced microgliosis and long-term potentiation in the spinal cord in mice. Last, intrathecal infusion of nivolumab inhibited intrathecal morphine-induced antinociception in nonhuman primates. Our findings demonstrate that PD-1 regulates opioid receptor signaling in nociceptive neurons, leading to altered opioid-induced antinociception in rodents and nonhuman primates.

2615 related Products with: Anti-PD-1 treatment impairs opioid antinociception in rodents and nonhuman primates.



Related Pathways

paperclip

#   // Save this To Up


2897 related Products with:



Related Pathways

  •  
  • No related Items
paperclip

#   // Save this To Up


2250 related Products with:



Related Pathways

  •  
  • No related Items
paperclip

#32044380   // Save this To Up

Cysteine String Proteins.

Cysteine string protein (CSP) was discovered by use of a synapse-specific, monoclonal antibody to screen a cDNA expression library in Drosophila. A vertebrate CSP homolog was later identified and shown to co-purify with synaptic vesicles. CSP-α is now recognized as a membrane constituent of many regulated secretory organelles. Knockout of the csp gene in Drosophila produced temperature-sensitive paralysis reflecting a loss of evoked (but not spontaneous) transmitter release. However, CSP's role in regulated exocytosis remains ambiguous. Fruit flies lacking the csp gene also exhibited nerve terminal degeneration as did mice deficient in the csp-α gene. This phenotype has been ascribed to the depletion of a functional pool of the t-SNARE, SNAP-25. However, recent studies showing that an endosomal pool of CSP-α contributes to a novel, protein-export pathway argues that CSP's role in neurodegeneration is more complex. Clients of this later pathway include tau and α-synuclein, proteins linked to neurodegeneration. Additionally, mutations in the csp-α gene cause an adult-onset, neuronal ceroid lipofuscinosis and diminished CSP-α expression is an early event in Alzheimer's disease. Collectively, these findings indicate that much remains to be learned about the role of CSPs in cellular secretory pathways and human disease.

1323 related Products with: Cysteine String Proteins.



Related Pathways