Only in Titles

           Search results for: Mouse Anti-Troponin-T (Cardiac) Antibodies    

paperclip

#28900504   2017/09/13 Save this To Up

Platelet-Targeted Delivery of Peripheral Blood Mononuclear Cells to the Ischemic Heart Restores Cardiac Function after Ischemia-Reperfusion Injury.

One of the major hurdles in intravenous regenerative cell therapy is the low homing efficiency to the area where these cells are needed. To increase cell homing toward areas of myocardial damage, we developed a bispecific tandem single-chain antibody (Tand-scFvSca-1+GPIIb/IIIa) that binds with high affinity to activated platelets via the activated glycoprotein (GP)IIb/IIIa receptor, and to a subset of peripheral blood mononuclear cells (PBMC) which express the stem cell antigen-1 (Sca-1) receptor. Methods: The Tand-scFvSca-1+GPIIb/IIIa was engineered, characterized and tested in a mouse model of ischemia-reperfusion (IR) injury applying left coronary artery occlusion for 60 min. Fluorescence cell tracking, cell infiltration studies, echocardiographic and histological analyses were performed. Results: Treatment of mice undergoing myocardial infarction with targeted-PBMCs led to successful cell delivery to the ischemic-reperfused myocardium, followed by a significant decrease in infiltration of inflammatory cells. Homing of targeted-PBMCs as shown by fluorescence cell tracking ultimately decreased fibrosis, increased capillary density, and restored cardiac function 4 weeks after ischemia-reperfusion injury. Conclusion: Tand-scFvSca-1+GPIIb/IIIa is a promising candidate to enhance therapeutic cell delivery in order to promote myocardial regeneration and thereby preventing heart failure.

2832 related Products with: Platelet-Targeted Delivery of Peripheral Blood Mononuclear Cells to the Ischemic Heart Restores Cardiac Function after Ischemia-Reperfusion Injury.

AccuzolTM Total RNA Extra REASTAIN® Quick Diff Kit Troponin I test card, ser Anti beta3 AR Human, Poly NycoPrep™ 1.077, for is Human Tonsil Microvascula Human Cardiac Microvascul Human Cord Blood CD34+ Ce Rat Anti-Rat RT6.1 (Perip Rat Anti-Rat RT6.2 (Perip FDA Standard Frozen Tissu FDA Standard Frozen Tissu

Related Pathways

paperclip

#28878768   2017/09/07 Save this To Up

Natural IgM and TLR Agonists Switch Murine Splenic Pan-B to "Regulatory" Cells That Suppress Ischemia-Induced Innate Inflammation via Regulating NKT-1 Cells.

Natural IgM anti-leukocyte autoantibodies (IgM-ALAs) inhibit inflammation by several mechanisms. Here, we show that pan-B cells and bone marrow-derived dendritic cells (BMDCs) are switched to regulatory cells when pretreated ex vivo with IgM. B cells are also switched to regulatory cells when pretreated ex vivo with CpG but not with LPS. Pre-emptive infusion of such ex vivo induced regulatory cells protects C57BL/6 mice from ischemia-induced acute kidney injury (AKI) via regulation of in vivo NKT-1 cells, which normally amplify the innate inflammatory response to DAMPS released after reperfusion of the ischemic kidney. Such ex vivo induced regulatory pan-B cells and BMDC express low CD1d and inhibit inflammation by regulating in vivo NKT-1 in the context of low-lipid antigen presentation and by a mechanism that requires costimulatory molecules, CD1d, PDL1/PD1, and IL10. Second, LPS and CpG have opposite effects on induction of regulatory activity in BMDC and B cells. LPS enhances regulatory activity of IgM-pretreated BMDC but negates the IgM-induced regulatory activity in B cells, while CpG, with or without IgM pretreatment, induces regulatory activity in B cells but not in BMDC. Differences in the response of pan-B and dendritic cells to LPS and CpG, especially in the presence of IgM-ALA, may have relevance during infections and inflammatory disorders where there is an increased IgM-ALA and release of TLRs 4 and 9 ligands. Ex vivo induced regulatory pan-B cells could have therapeutic relevance as these easily available cells can be pre-emptively infused to prevent AKI that can occur during open heart surgery or in transplant recipients receiving deceased donor organs.

2909 related Products with: Natural IgM and TLR Agonists Switch Murine Splenic Pan-B to "Regulatory" Cells That Suppress Ischemia-Induced Innate Inflammation via Regulating NKT-1 Cells.

AccuzolTM Total RNA Extra Anti C Reactive Protein A anti B human blood antige Blood Group Antibodies a anti B human blood group anti H inh human blood an Leptin ELISA Kit, Rat Lep Blue biopsy cassettes, sq anti CD7 All T cells Reco anti Transferrin receptor (R,R)-N-(2-Amino-1,2-diph 5-Amino-3-(1-naphthyl)-4-

Related Pathways

paperclip

#28854184   2017/08/30 Save this To Up

Exploring virulence and immunogenicity in the emerging pathogen Sporothrix brasiliensis.

Sporotrichosis is a polymorphic chronic infection of humans and animals classically acquired after traumatic inoculation with soil and plant material contaminated with Sporothrix spp. propagules. An alternative and successful route of transmission is bites and scratches from diseased cats, through which Sporothrix yeasts are inoculated into mammalian tissue. The development of a murine model of subcutaneous sporotrichosis mimicking the alternative route of transmission is essential to understanding disease pathogenesis and the development of novel therapeutic strategies. To explore the impact of horizontal transmission in animals (e.g., cat-cat) and zoonotic transmission on Sporothrix fitness, the left hind footpads of BALB/c mice were inoculated with 5×106 yeasts (n = 11 S. brasiliensis, n = 2 S. schenckii, or n = 1 S. globosa). Twenty days post-infection, our model reproduced both the pathophysiology and symptomology of sporotrichosis with suppurating subcutaneous nodules that progressed proximally along lymphatic channels. Across the main pathogenic members of the S. schenckii clade, S. brasiliensis was usually more virulent than S. schenckii and S. globosa. However, the virulence in S. brasiliensis was strain-dependent, and we demonstrated that highly virulent isolates disseminate from the left hind footpad to the liver, spleen, kidneys, lungs, heart, and brain of infected animals, inducing significant and chronic weight loss (losing up to 15% of their body weight). The weight loss correlated with host death between 2 and 16 weeks post-infection. Histopathological features included necrosis, suppurative inflammation, and polymorphonuclear and mononuclear inflammatory infiltrates. Immunoblot using specific antisera and homologous exoantigen investigated the humoral response. Antigenic profiles were isolate-specific, supporting the hypothesis that different Sporothrix species can elicit a heterogeneous humoral response over time, but cross reaction was observed between S. brasiliensis and S. schenckii proteomes. Despite great diversity in the immunoblot profiles, antibodies were mainly derived against 3-carboxymuconate cyclase, a glycoprotein oscillating between 60 and 70 kDa (gp60-gp70) and a 100-kDa molecule in nearly 100% of the assays. Thus, our data broaden the current view of virulence and immunogenicity in the Sporothrix-sporotrichosis system, substantially expanding the possibilities for comparative genomic with isolates bearing divergent virulence traits and helping uncover the molecular mechanisms and evolutionary pressures underpinning the emergence of Sporothrix virulence.

2622 related Products with: Exploring virulence and immunogenicity in the emerging pathogen Sporothrix brasiliensis.

Thermal Shaker with cooli FDA Standard Frozen Tissu FDA Standard Frozen Tissu FDA Standard Frozen Tissu FDA Standard Frozen Tissu FDA Standard Frozen Tissu FDA Standard Frozen Tissu Multiple organ tumor tiss MultiGene Gradient therm Interleukin-34 IL34 (N-t Interleukin-34 IL34 anti Sterile filtered goat se

Related Pathways

paperclip

#28842746   2017/08/26 Save this To Up

Expression profiling and immunolocalization of Na(+)-D-glucose-cotransporter 1 in mice employing knockout mice as specificity control indicate novel locations and differences between mice and rats.

The expression and localization of sodium-D-glucose cotransporter SGLT1 (SLC5A1), which is involved in small intestinal glucose absorption and renal glucose reabsorption, is of high biomedical relevance because SGLT1 inhibitors are currently tested for antidiabetic therapy. In human and rat organs, detailed expression profiling of SGLT1/Sglt1 mRNA and immunolocalization of the transporter protein has been performed. Using polyspecific antibodies and preabsorption with antigenic peptide as specificity control, in several organs, different immunolocalizations of SGLT1/Sglt1 between human and rat were obtained. Because the preabsorption control does not exclude cross-reactivity with similar epitopes, some localizations remained ambiguous. In the present study, we performed an immunocytochemical localization of Sglt1 in various organs of mice. Specificities of the immunoreactions were evaluated using antibody preabsorption with the Sglt1 peptide and the respective organs of Sglt1 knockout mice. Because staining in some locations was abolished after antibody preabsorption but remained in the knockout mice, missing staining in knockout mice was used as specificity criterion. The immunolocalization in mouse was identical or similar to rat in many organs, including small intestine, liver, and kidney. However, the male-dominant renal Sglt1 protein expression in mice differed from the female-dominant expression in rats, and localization in lung, heart, and brain observed in rats was not detected in mice. In mice, several novel locations of Sglt1, e.g., in eyes, tongue epithelial cells, pancreatic ducts, prostate, and periurethral glands were detected. Using end-point and quantitative RT-PCR in various organs, different Sglt1 expression in mice and rats was confirmed.

1033 related Products with: Expression profiling and immunolocalization of Na(+)-D-glucose-cotransporter 1 in mice employing knockout mice as specificity control indicate novel locations and differences between mice and rats.

Anti C Reactive Protein A Rabbit Anti-Human Androge 17β-Acetoxy-2α-bromo-5 (5α,16β)-N-Acetyl-16-[2 (5α,16β)-N-Acetyl-16-ac 5α-N-Acetyl-2'H-androst- 5α-N-Acetyl-2'H-androst- 3-O-Acetyl 5,14-Androstad 3-O-Acetyl-17-O-tert-buty 3β-O-Acetyl-androsta-5,1 Androstadienone C19H26O C 5α-Androstan-3β-ol �

Related Pathways

paperclip

#28827474   2017/08/22 Save this To Up

P2y12 Receptor Promotes Pressure Overload-Induced Cardiac Remodeling via Platelet-Driven Inflammation in Mice.

Inflammation plays a critical role in adverse cardiac remodeling and heart failure. The P2y12 receptor is one of the predominant activating receptors for platelets, thus initiating inflammatory responses under various diseases. In this study, we investigated the functional significance of P2y12-mediated platelet activation in pressure overload-induced cardiac remodeling. Notably, P2y12 knockout (P2y12(-/-)) mice exhibited suppressed transverse aortic constriction-induced changes in cardiac hypertrophy, collagen synthesis, inflammatory cell recruitment, and cardiac dysfunction. Activated platelets and platelet-leukocyte aggregates were markedly downregulated in P2y12 knockout mice compared with wild-type counterparts after transverse aortic constriction. Moreover, bone marrow chimera experiments revealed that wild-type recipients of P2y12 knockout bone marrow markedly improved cardiac function and attenuated cardiac remodeling, reversed by wild-type platelets reinjection. Platelet depletion and P-selectin inhibition mimicked these protective effects by limiting the interaction between activated platelets and leukocytes. Furthermore, activated wild-type platelets directly induced cardiomyocyte hypertrophy and collagen synthesis via α-granule exocytosis, vanished in P2y12 knockout platelets or those administered anti-NSF (N-ethlymalimide-sensitive factor) antibodies. The results suggest that P2y12-mediated platelet activation promotes cardiac remodeling by triggering a series of inflammatory changes and interacting with leukocytes and endotheliocytes.

1584 related Products with: P2y12 Receptor Promotes Pressure Overload-Induced Cardiac Remodeling via Platelet-Driven Inflammation in Mice.

Anti AGO2 Human, Monoclon Anti AGO2 Mouse, Monoclon Anti AGO2 Human, Monoclon Anti AGO2 Mouse, Monoclon Human Epstein-Barr Virus Jurkat Cell Extract (Indu Jurkat Cell Extract (Indu Jurkat Cell Extract (Indu Jurkat Cell Extract (Indu Interferon-a Receptor Typ Mouse Anti-Human Interleu anti H inh human blood an

Related Pathways

paperclip

#28819447   2017/08/18 Save this To Up

Targeting Activated Platelets: A Unique and Potentially Universal Approach for Cancer Imaging.

Rationale The early detection of primary tumours and metastatic disease is vital for successful therapy and is contingent upon highly specific molecular markers and sensitive, non-invasive imaging techniques. We hypothesized that the accumulation of activated platelets within tumours is a general phenomenon and thus represents a novel means for the molecular imaging of cancer. Here we investigate a unique single chain antibody (scFv), which specifically targets activated platelets, as a novel biotechnological tool for molecular imaging of cancer. Methods The scFvGPIIb/IIIa, which binds specifically to the activated form of the platelet integrin receptor GPIIb/IIIa present on activated platelets, was conjugated to either Cy7, (64)Cu or ultrasound-enhancing microbubbles. Using the Cy7 labelled scFvGPIIb/IIIa, fluorescence imaging was performed in mice bearing four different human tumour xenograft models; SKBr3, MDA-MB-231, Ramos and HT-1080 cells. Molecular imaging via PET and ultrasound was performed using the scFvGPIIb/IIIa-(64)Cu and scFvGPIIb/IIIa-microbubbles, respectively, to further confirm specific targeting of scFvGPIIb/IIIa to activated platelets in the tumour stroma. Results Using scFvGPIIb/IIIa we successfully showed specific targeting of activated platelets within the microenvironment of human tumour xenografts models via three different molecular imaging modalities. The presence of platelets within the tumour microenvironment, and as such their relevance as a molecular target epitope in cancer was further confirmed via immunofluorescence of human tumour sections of various cancer types, thus validating the translational importance of our novel approach to human disease. Conclusion Our study provides proof of concept for imaging and localization of tumours by molecular targeting activated platelets. We illustrate the utility of a unique scFv as a versatile biotechnological tool which can be conjugated to various contrast agents for molecular imaging of cancer using three different imaging modalities. These findings warrant further development of this activated platelet specific scFvGPIIb/IIIa, potentially as a universal marker for cancer diagnosis and ultimately for drug delivery in an innovative theranostic approach.

2806 related Products with: Targeting Activated Platelets: A Unique and Potentially Universal Approach for Cancer Imaging.

CA125, Ovarian Cancer An CA125, Ovarian Cancer An CA125, Ovarian Cancer An PolyTek HRP Anti-Rabbit PolyTek HRP Anti-Mouse P MOUSE ANTI BOVINE ROTAVIR Bone Morphogenetic Protei anti SLAM anti CDw150 IgG Growth Differentiation Fa Amplite™ Fluorimetric F Androgen Receptor (Phosph Androgen Receptor (Phosph

Related Pathways

paperclip

#28817674   2017/08/17 Save this To Up

New insights into the distribution, protein abundance and subcellular localisation of the endogenous peroxisomal biogenesis proteins PEX3 and PEX19 in different organs and cell types of the adult mouse.

Peroxisomes are ubiquitous organelles mainly involved in ROS and lipid metabolism. Their abundance, protein composition and metabolic function vary depending on the cell type and adjust to different intracellular and environmental factors such as oxidative stress or nutrition. The biogenesis and proliferation of these important organelles are regulated by proteins belonging to the peroxin (PEX) family. PEX3, an integral peroxisomal membrane protein, and the cytosolic shuttling receptor PEX19 are thought to be responsible for the early steps of peroxisome biogenesis and assembly of their matrix protein import machinery. Recently, both peroxins were suggested to be also involved in the autophagy of peroxisomes (pexophagy). Despite the fact that distribution and intracellular abundance of these proteins might regulate the turnover of the peroxisomal compartment in a cell type-specific manner, a comprehensive analysis of the endogenous PEX3 and PEX19 distribution in different organs is still missing. In this study, we have therefore generated antibodies against endogenous mouse PEX3 and PEX19 and analysed their abundance and subcellular localisation in various mouse organs, tissues and cell types and compared it to the one of three commonly used peroxisomal markers (PEX14, ABCD3 and catalase). Our results revealed that the abundance of PEX3, PEX19, PEX14, ABCD3 and catalase strongly varies in the analysed organs and cell types, suggesting that peroxisome abundance, biogenesis and matrix protein import are independently regulated. We further found that in some organs, such as heart and skeletal muscle, the majority of the shuttling receptor PEX19 is bound to the peroxisomal membrane and that a strong variability exists in the cell type-specific ratio of cytosol- and peroxisome-associated PEX19. In conclusion, our results indicate that peroxisomes in various cell types are heterogeneous with regards to their matrix, membrane and biogenesis proteins.

1879 related Products with: New insights into the distribution, protein abundance and subcellular localisation of the endogenous peroxisomal biogenesis proteins PEX3 and PEX19 in different organs and cell types of the adult mouse.

Recombinant Human PKC the Recombinant Human PKC the Recombinant Human PKC the FDA Standard Frozen Tissu FDA Standard Frozen Tissu FDA Standard Frozen Tissu FDA Standard Frozen Tissu FDA Standard Frozen Tissu FDA Standard Frozen Tissu Normal mouse multiple org Recombinant Human Androge Thermal Shaker with cooli

Related Pathways

paperclip

#28813513   2017/08/16 Save this To Up

Validation of commercial Mas receptor antibodies for utilization in Western Blotting, immunofluorescence and immunohistochemistry studies.

Mas receptor (MasR) is a G protein-coupled receptor proposed as a candidate for mediating the angiotensin (Ang)-converting enzyme 2-Ang (1-7) protective axis of renin-angiotensin system. Because the role of this receptor is not definitively clarified, determination of MasR tissue distribution and expression levels constitutes a critical knowledge to fully understanding its function. Commercially available antibodies have been widely employed for MasR protein localization and quantification, but they have not been adequately validated. In this study, we carried on an exhaustive evaluation of four commercial MasR antibodies, following previously established criteria. Western Blotting (WB) and immunohistochemistry studies starting from hearts and kidneys from wild type (WT) mice revealed that antibodies raised against different MasR domains yielded different patterns of reactivity. Furthermore, staining patterns appeared identical in samples from MasR knockout (MasR-KO) mice. We verified by polymerase chain reaction analysis that the MasR-KO mice used were truly deficient in this receptor as MAS transcripts were undetectable in either heart or kidney from this animal model. In addition, we evaluated the ability of the antibodies to detect the human c-myc-tagged MasR overexpressed in human embryonic kidney cells. Three antibodies were capable of detecting the MasR either by WB or by immunofluorescence, reproducing the patterns obtained with an anti c-myc antibody. In conclusion, although three of the selected antibodies were able to detect MasR protein at high expression levels observed in a transfected cell line, they failed to detect this receptor in mice tissues at physiological expression levels. As a consequence, validated antibodies that can recognize and detect the MasR at physiological levels are still lacking.

1947 related Products with: Validation of commercial Mas receptor antibodies for utilization in Western Blotting, immunofluorescence and immunohistochemistry studies.

IGF-1R Signaling Phospho- Insulin Receptor Phospho- Nuclear Membrane Receptor T-Cell Receptor Signaling Rabbit Anti-Human Androge Goat Anti-Human Androgen Goat Anti-Human Bradykini Goat Anti-Human, Mouse Ca Goat Anti-Rat CCKA Recept Goat Anti- Dopamine recep Goat Anti- EP1 receptor P Goat Anti-Human EP4 prost

Related Pathways

paperclip

#28791002   2017/08/09 Save this To Up

Antibody Detection, Isolation, Genotyping, and Virulence of Toxoplasma gondii in Captive Felids from China.

The felids are the only definitive hosts of Toxoplasma gondii, which could excrete oocysts into the environment and provide an infection source for toxoplasmosis in various warm-blooded animal species, particularly the captive felids that live close to human communities. The infection rate of the captive felids is a perfect standard in detecting the presence of Toxoplasma gondii oocysts in the environment. In this study, sera or tissue samples from zoo (1 young tiger, 2 adult tigers, 6 young lions), farm (10 masked palm civets), and pet hospital (28 cats) from Henan Province (China) were collected. The sera (n = 47) were tested for immunoglobulin G (IgG) antibodies against T. gondii by using modified agglutination test (MAT), whereas the hearts tissue (n = 40) were bioassayed in mice to isolate T. gondii strains. The genotype was distinguished by using PCR-RFLP of 10 loci (SAG1, SAG2, SAG3, GRA6, BTUB, L358, c22-8, PK1, c29-2, and Apico). The detection rate for the T. gondii antibody in captive felids was 21.3% (10/47). One viable T. gondii strain (TgCatCHn4) was obtained from a cat heart tissue, and its genotype was ToxoDB#9. The oocysts of ToxoDB#9 were collected from a T. gondii-free cat. The virulence of TgCatCHn4 was low and no cysts were detected in the brain of mice at 60 days post-inoculation. The finding of the present study suggested a widespread exposure of T. gondii for felids in Henan Province of central China, particularly those from the zoological gardens and homes. ToxoDB#9 was the predominant strain in China. Preventive measures against T. gondii oocyst contamination of various components of the environment should thus be implemented, including providing pre-frozen meat, well-cooked cat food, cleaned fruits and vegetables, monitoring birds and rodents, inactive T. gondii oocysts in felids feces, and proper hygiene.

1526 related Products with: Antibody Detection, Isolation, Genotyping, and Virulence of Toxoplasma gondii in Captive Felids from China.

Toxoplasma gondii SAG1 an Toxoplasma gondii GRA8, r Interleukin-34 IL34 (N-t Interleukin-34 IL34 anti Toxoplasma gondii MIC 3 r Toxoplasma gondii P24 (GR Toxoplasma gondii P29 (GR Toxoplasma gondii P30 (SA Detection Buffer A&B Anti Detection Buffer C&D Anti Anti AGO2 Human, Monoclon Anti AGO2 Mouse, Monoclon

Related Pathways

paperclip

#28698955   2017/07/12 Save this To Up

Role of Natural IgM Autoantibodies (IgM-NAA) and IgM Anti-Leukocyte Antibodies (IgM-ALA) in Regulating Inflammation.

Natural IgM autoantibodies (IgM-NAA) are rapidly produced to inhibit pathogens and abrogate inflammation mediated by invading microorganisms and host neoantigens. IgM-NAA achieve this difficult task by being polyreactive with low binding affinity but with high avidity, characteristics that allow these antibodies to bind antigenic determinants shared by pathogens and neoantigens. Hence the same clones of natural IgM can bind and mask host neoantigens as well as inhibit microorganisms. In addition, IgM-NAA regulate the inflammatory response via mechanisms involving binding of IgM to apoptotic cells to enhance their removal and binding of IgM to live leukocytes to regulate their function. Secondly, we review how natural IgM prevents autoimmune disorders arising from pathogenic IgG autoantibodies as well as by autoreactive B and T cells that have escaped tolerance mechanisms. Thirdly, using IgM knockout mice, we show that regulatory B and T cells require IgM to effectively regulate inflammation mediated by innate, adaptive and autoimmune mechanisms. It is therefore not surprising why the host positively selects such autoreactive B1 cells that generate protective IgM-NAA, which are also evolutionarily conserved. Fourthly, we show that IgM anti-leukocyte autoantibodies (IgM-ALA) levels and their repertoire can vary in normal humans and disease states and this variation may partly explain the observed differences in the inflammatory response after infection, ischemic injury or after a transplant. Finally we also show how protective IgM-NAA can be rendered pathogenic under non-physiological conditions. IgM-NAA have therapeutic potential. Polyclonal IgM infusions can be used to abrogate ongoing inflammation. Additionally, inflammation arising after ischemic kidney injury, e.g., during high-risk elective cardiac surgery or after allograft transplantation, can be prevented by pre-emptively infusing polyclonal IgM, or DC pretreated ex vivo with IgM, or by increasing in vivo IgM with a vaccine approach. Cell therapy with IgM pretreated cells, is appealing as less IgM will be required.

2524 related Products with: Role of Natural IgM Autoantibodies (IgM-NAA) and IgM Anti-Leukocyte Antibodies (IgM-ALA) in Regulating Inflammation.

Mouse anti IgA1 antibody, Mouse anti Human IgM anti Mouse anti Human IgM anti Blood Group Antibodies a anti H inh human blood an Rabbit anti Mouse IgM, Un anti-5-Methylcytosine (an Mouse Anti-Human IgM Anti Mouse Anti-Human IgM [+FI Mouse Anti-Human IgM [+RP N A Anti-Mouse IgM kappa Mouse Anti-IgM neg. contr

Related Pathways