Only in Titles

           Search results for: PI3Kâ„¢   

paperclip

#29351580   // Save this To Up

Maternal nutrient restriction impairs young adult offspring ovarian signaling resulting in reproductive dysfunction and follicle loss.

Reproductive abnormalities are included as health complications in offspring exposed to poor prenatal nutrition. We have previously shown in a rodent model, that offspring born to nutrient restriction during pregnancy are born small, enter puberty early, and display characteristics of early ovarian aging as adults. The present study investigated whether key proteins involved in follicle recruitment and growth mediate ovarian follicle loss. Pregnant rats were randomized to: a standard diet throughout pregnancy and lactation (CON), or a calorie-restricted (50% of control) diet (UN) during pregnancy. Offspring reproductive phenotype was investigated at postnatal days 4, 27, and 65. Maternal UN resulted in young adult (P65) irregular estrous cyclicity due to persistent estrus, a significant loss of antral follicles, corpora lutea, and an increase in atretic follicles. This decrease in growing follicles in UN offspring appears to be due to increased apoptosis as seen by immunopositive staining of pro-apoptotic factor CASP3 in ovaries of young adult offspring. UN prepubertal offspring had reduced expression levels of Fshr in antral follicles, which may contribute to a decrease in PI3K/AKT activation evident as a decrease in pAKT immunolocalization in prepubertal antral follicles. Moreover, neonatal ovaries of UN offspring show decreased levels of immunopositive staining for AMHR2. Collectively, these data demonstrate that maternal UN during pregnancy impacts ovarian function in offspring as early as P65 and provides a model for understanding the mechanisms driving early life UN-induced follicle loss and reproductive dysfunction.

2907 related Products with: Maternal nutrient restriction impairs young adult offspring ovarian signaling resulting in reproductive dysfunction and follicle loss.

AKT PKB Signaling Phospho AMPK Signaling Phospho-Sp ErbB Her Signaling Phosph ERK Signaling Phospho-Spe GPCR Signaling to MAPK ER IGF-1R Signaling Phospho- NF-kB II Phospho-Specific p53 Signaling Phospho-Spe T-Cell Receptor Signaling TGF-Beta Signaling Phosph Ovarian cancer tissue arr p130Cas-associated protei

Related Pathways

paperclip

#29350678   // Save this To Up

PIK3R3 regulates PPARα expression to stimulate fatty acid β-oxidation and decrease hepatosteatosis.

Phosphatidylinositol 3-kinase (PI3K) signaling plays an important role in the regulation of cellular lipid metabolism and non-alcoholic fatty liver disease (NAFLD). However, little is known about the role of the regulatory subunits of PI3K in lipid metabolism and NAFLD. In this study, we characterized the functional role of PIK3R3 in fasting-induced hepatic lipid metabolism. In this study, we showed that the overexpression of PIK3R3 promoted hepatic fatty acid oxidation via PIK3R3-induced expression of PPARα, thus improving the fatty liver phenotype in high-fat diet (HFD)-induced mice. By contrast, hepatic PIK3R3 knockout in normal mice led to increased hepatic TG levels. Our study also showed that PIK3R3-induced expression of PPARα was dependent on HNF4α. The novel PIK3R3-HNF4α-PPARα signaling axis plays a significant role in hepatic lipid metabolism. As the activation of PIK3R3 decreased hepatosteatosis, PIK3R3 can be considered a promising novel target for developing NAFLD and metabolic syndrome therapies.

1574 related Products with: PIK3R3 regulates PPARα expression to stimulate fatty acid β-oxidation and decrease hepatosteatosis.

Fatty acid free heat sho Fatty acid free heat sho Fatty acid free heat sho Fatty acid free heat sho Fatty Acid Synthase (FASN Fatty Acid Synthase antib Fatty Acid Synthase antib Triglyceride Assay Kit Li Anti AGE 3 Monoclonal Ant (2S)-2-Amino-benzenebutan Androst-4-ene-3,17-dion-1 (1R,3S,5R)-2-Azabicyclo[3

Related Pathways

paperclip

#29350613   // Save this To Up

FGF mediated MAPK and PI3K/Akt Signals make distinct contributions to pluripotency and the establishment of Neural Crest.

Early vertebrate embryos possess cells with the potential to generate all embryonic cell types. While this pluripotency is progressively lost as cells become lineage restricted, Neural Crest cells retain broad developmental potential. Here, we provide novel insights into signals essential for both pluripotency and neural crest formation in Xenopus. We show that FGF signaling controls a subset of genes expressed by pluripotent blastula cells, and find a striking switch in the signaling cascades activated by FGF signaling as cells lose pluripotency and commence lineage restriction. Pluripotent cells display and require Map Kinase signaling, whereas PI3 Kinase/Akt signals increase as developmental potential is restricted, and are required for transit to certain lineage restricted states. Importantly, retaining a high Map Kinase/low Akt signaling profile is essential for establishing Neural Crest stem cells. These findings shed important light on the signal-mediated control of pluripotency and the molecular mechanisms governing genesis of Neural Crest.

2922 related Products with: FGF mediated MAPK and PI3K/Akt Signals make distinct contributions to pluripotency and the establishment of Neural Crest.

Androgen Receptor (Phosph Androgen Receptor (Phosph Rabbit Anti-Human Androge Rabbit Anti-Human Androge Androgen Receptor (Ab 650 AZD-3514 Mechanisms: Andr 17β-Acetoxy-2α-bromo-5 (5α,16β)-N-Acetyl-16-[2 (5α,16β)-N-Acetyl-16-ac 5α-N-Acetyl-2'H-androst- 5α-N-Acetyl-2'H-androst- 3-O-Acetyl 5,14-Androstad

Related Pathways

paperclip

#29350244   // Save this To Up

Autophagy-related (ATG) 11, ATG9 and the phosphatidylinositol 3-kinase control ATG2-mediated formation of autophagosomes in Arabidopsis.

Using quantitative assays for autophagy, we analyzed 4 classes of atg mutants, discovered new atg2 phenotypes and ATG gene interactions, and proposed a model of autophagosome formation in plants. Plant and other eukaryotic cells use autophagy to target cytoplasmic constituents for degradation in the vacuole. Autophagy is regulated and executed by a conserved set of proteins called autophagy-related (ATG). In Arabidopsis, several groups of ATG proteins have been characterized using genetic approaches. However, the genetic interactions between ATG genes have not been established and the relationship between different ATG groups in plants remains unclear. Here we analyzed atg2, atg7, atg9, and atg11 mutants and their double mutants at the physiological, biochemical, and subcellular levels. Involvement of phosphatidylinositol 3-kinase (PI3K) in autophagy was also tested using wortmannin, a PI3K inhibitor. Our mutant analysis using autophagy markers showed that atg7 and atg2 phenotypes are more severe than those of atg11 and atg9. Unlike other mutants, atg2 cells accumulated several autophagic vesicles that could not be delivered to the vacuole. Analysis of atg double mutants, combined with wortmannin treatment, indicated that ATG11, PI3K, and ATG9 act upstream of ATG2. Our data support a model in which plant ATG1 and PI3K complexes play a role in the initiation of autophagy, whereas ATG2 is involved in a later step during the biogenesis of autophagic vesicles.

1713 related Products with: Autophagy-related (ATG) 11, ATG9 and the phosphatidylinositol 3-kinase control ATG2-mediated formation of autophagosomes in Arabidopsis.

Tyrosine Kinase Adaptors Human Interleukin-11 IL-1 Aurora Kinase B Inhibitor Aurora Kinase B Inhibitor Aurora Kinase B Inhibitor Aurora Kinase B Inhibitor ATM Kinase Inhibitor ATM Kinase Inhibitor, KU- ATM Kinase Inhibitor, KU- IKK-ε Kinase Inhibitor I IKK-ε Kinase Inhibitor I RANK Ligand Soluble, Huma

Related Pathways

paperclip

#29350101   // Save this To Up

Biomimetic composite scaffold SIS/MBG exhibits high osteogenic and angiogenic capacity.

Biomaterials with excellent osteogenic and angiogenic activities are desirable to repair massive bone defects. Decellularized matrix from porcine small intestinal submucosa (SIS) has attracted particular attention for tissue regeneration because it has strong angiogenic effects and retains plentiful bioactive components. However, it has inferior osteoinductivity and osteoconductivity. In this study, we developed porous composite of SIS combined with mesoporous bioactive glass (SIS/MBG) with the goal of improving the mechanical and biological properties. SIS/MBG scaffolds showed uniform interconnected macropores (~150 μm), high porosity (~76%) and enhanced compressive strength (~0.87 MPa). The proliferation and osteogenic gene expression (Runx2, ALP, Ocn and Col-Iα) of rat bone marrow stromal cells (rBMSCs) as well as the proliferation, angiogenic gene expression (VEGF, bFGF, and KDR) and tube formation capacity of human umbilical vein endothelial cells (HUVECs) in SIS/MBG scaffolds were significantly upregulated compared with non-mesoporous bioactive glass (BG)-modified SIS (SIS/BG) and SIS-only scaffolds. Western blot analysis revealed that SIS/MBG induced rBMSCs to osteogenic differentiation via the activation of Wnt/β-Catenin signaling pathway, and SIS/MBG enhanced angiogenic activity of HUVEC via the activation of PI3k/Akt pathways. The in vivo results demonstrated that SIS/MBG scaffolds significantly enhanced new bone formation and neovascularization simultaneously in critical-sized rat calvarial defects as compared to SIS/BG and SIS. Collectively, the osteostimulative and angiostimulative biomimetic composite scaffold SIS/MBG represents an exciting biomaterial option for bone regeneration.

1607 related Products with: Biomimetic composite scaffold SIS/MBG exhibits high osteogenic and angiogenic capacity.

Cytokeratin, High Molecu Cytokeratin, High Molecu Cytokeratin, High Molecu Cytokeratin, High Molecu Cytokeratin, High Molecu Cytokeratin, High Molecu DAB Chromogen Substrate DAB Substrate (High Cont DAB Substrate (High Cont DAB Substrate (High Cont DAB Chromogen Substrate DAB Chromogen Substrate

Related Pathways

paperclip

#29349683   // Save this To Up

Plantamajoside Inhibits Lipopolysaccharide-Induced MUC5AC Expression and Inflammation through Suppressing the PI3K/Akt and NF-κB Signaling Pathways in Human Airway Epithelial Cells.

It has been reported that plantamajoside (PMS), a major natural compound isolated from Plantago asiatica, has anti-inflammatory activities. However, the effect of PMS on respiratory inflammatory diseases has not yet been studied. The present study aimed to evaluate the effect of PMS on lipopolysaccharide (LPS)-induced airway inflammation and the underlying mechanism. The results showed that PMS did not affect the cell viability of 16-HBE cells. PMS (20 and 40 μg/ml) decreased the expression levels of MUC5AC, IL-6, and IL-1β, which were induced by LPS treatment. PMS inhibited the LPS-induced phosphorylation of Akt and p65. In addition, inhibitors of the PI3K/Akt and NF-κB pathways attenuated the effect of LPS on 16-HBE cells. In conclusion, PMS inhibits LPS-induced MUC5AC expression and inflammation through suppressing the PI3K/Akt and NF-κB signaling pathways, indicating that PMS may be a potential therapy for the treatment of respiratory inflammatory diseases.

1837 related Products with: Plantamajoside Inhibits Lipopolysaccharide-Induced MUC5AC Expression and Inflammation through Suppressing the PI3K/Akt and NF-κB Signaling Pathways in Human Airway Epithelial Cells.

Anti AGO2 Human, Monoclon Anti AGO2 Human, Monoclon Human Epstein-Barr Virus Rabbit Anti-Human Androge Rabbit Anti-Human Androge Macrophage Colony Stimula Macrophage Colony Stimula TGF beta induced factor 2 AKT PKB Signaling Phospho NF-kB II Phospho-Specific Inflammation (Human) Anti Inflammation (Human) Anti

Related Pathways

paperclip

#29349661   // Save this To Up

PKM2 is involved in neuropathic pain by regulating ERK and STAT3 activation in rat spinal cord.

Pyruvate kinase isozymes M2 (PKM2), as a member of pyruvate kinase family, plays a role of glycolytic enzyme in glucose metabolism. It also functions as protein kinase in cell proliferation, signaling, immunity, and gene transcription. In this study, the role of PKM2 in neuropathic pain induced by chronic constriction injury (CCI) was investigated.

1037 related Products with: PKM2 is involved in neuropathic pain by regulating ERK and STAT3 activation in rat spinal cord.

Stat3 Activation Inhibito GLP 2 ELISA Kit, Rat Prog Rabbit Anti-intestinal FA Rabbit Anti-APIP Apaf1 In Rabbit Anti-APIP Apaf1 In Interleukin-34 IL34 (N-t Interleukin-34 IL34 anti Sterile filtered rat ser Anti AGO2 Human, Monoclon Anti AGO2 Mouse, Monoclon Anti AGO2 Human, Monoclon Anti AGO2 Mouse, Monoclon

Related Pathways

paperclip

#29349567   // Save this To Up

HBeAg induces the expression of macrophage miR-155 to accelerate liver injury via promoting production of inflammatory cytokines.

Activation of Kupffer cells (KCs) induced that inflammatory cytokine production plays a central role in the pathogenesis of HBV infection. The previous studies from our and other laboratory demonstrated miRNAs can regulate TLR-inducing inflammatory responses to macrophage. However, the involvement of miRNAs in HBV-associated antigen-induced macrophage activation is still not thoroughly understood. Here, we evaluated the effects and mechanisms of miR-155 in HBV-associated antigen-induced macrophage activation. First, co-culture assay of HepG2 or HepG2.2.15 cells and RAW264.7 macrophages showed that HepG2.2.15 cells could significantly promote macrophages to produce inflammatory cytokines. Furthermore, we, respectively, stimulated RAW264.7 macrophages, mouse primary peritoneal macrophages, or healthy human peripheral blood monocytes with HBV-associated antigens, including HBcAg, HBeAg, and HBsAg, and found that only HBeAg could steadily enhance the production of inflammatory cytokines in these cells. Subsequently, miRNAs sequencing presented the up- or down-regulated expression of multiple miRNAs in HBeAg-stimulated RAW264.7 cells. In addition, we verified the expression of miR-155 and its precursors BIC gene with q-PCR in the system of co-culture or HBeAg-stimulated macrophages. Meanwhile, the increased miR-155 expression was positively correlation with serum ALT, AST, and HBeAg levels in AHB patients. Although MAPK, PI3K, and NF-κB signal pathways were all activated during HBeAg treatment, only PI3K and NF-κB pathways were involved in miR-155 expression induced by HBeAg stimulation. Consistently, miR-155 over-expression inhibited production of inflammatory cytokines, which could be reversed by knocking down miR-155. Moreover, we demonstrated that miR-155 regulated HBeAg-induced cytokine production by targeting BCL-6, SHIP-1, and SOCS-1. In conclusion, our data revealed that HBeAg augments the expression of miR-155 in macrophages via PI3K and NF-κB signal pathway and the increased miR-155 promotes HBeAg-induced inflammatory cytokine production by inhibiting the expression of BCL-6, SHIP-1, and SOCS-1.

1133 related Products with: HBeAg induces the expression of macrophage miR-155 to accelerate liver injury via promoting production of inflammatory cytokines.

Toxoplasma gondii MIC 3 r Human Macrophage Inflamma Human Macrophage Inflamma Human Macrophage Inflamma Human Macrophage Inflamma Human Macrophage Inflamma Human Gro g Macrophage In Mouse Macrophage Inflamma Mouse Macrophage Inflamma Mouse Macrophage Inflamma Mouse Macrophage Inflamma Rat Macrophage Inflammato

Related Pathways

paperclip

#29349457   // Save this To Up

Effects of tetrahedral DNA nanostructures on autophagy in chondrocytes.

Tetrahedral DNA nanostructures (TDNs) have gathered great attention and are being widely used in biomedicine. We demonstrated that autophagy increased after exposure to TDNs (250 nM) along with the up-regulation of several autophagy-related genes and proteins. TDNs enhanced cell autophagy through the PI3K/AKT/mTOR signaling pathway.

2679 related Products with: Effects of tetrahedral DNA nanostructures on autophagy in chondrocytes.

DNA (cytosine 5) methyltr removed without changing Rabbit Anti-FGF3 Oncogene Pfu DNA Polymerase (Not a Pfu DNA Polymerase (Not a Tfi DNA Ligase Includes w Tfi DNA Ligase Includes w Hotstart DNA Polymerase I Hotstart DNA Polymerase I Hotstart DNA Polymerase I pCAMBIA0105.1R Vector, (G Mouse Anti-DNA, intercala

Related Pathways

paperclip

#29348878   // Save this To Up

Identification of cancer prognosis-associated functional modules using differential co-expression networks.

The rapid accumulation of cancer-related data owing to high-throughput technologies has provided unprecedented choices to understand the progression of cancer and discover functional networks in multiple cancers. Establishment of co-expression networks will help us to discover the systemic properties of carcinogenesis features and regulatory mechanisms of multiple cancers. Here, we proposed a computational workflow to identify differentially co-expressed gene modules across 8 cancer types by using combined gene differential expression analysis methods and a higher-order generalized singular value decomposition. Four co-expression modules were identified; and oncogenes and tumor suppressors were significantly enriched in these modules. Functional enrichment analysis demonstrated the significantly enriched pathways in these modules, including ECM-receptor interaction, focal adhesion and PI3K-Akt signaling pathway. The top-ranked miRNAs (mir-199, mir-29, mir-200) and transcription factors (FOXO4, E2A, NFAT, and MAZ) were identified, which play an important role in deregulating cellular energetics; and regulating angiogenesis and cancer immune system. The clinical significance of the co-expressed gene clusters was assessed by evaluating their predictability of cancer patients' survival. The predictive power of different clusters and subclusters was demonstrated. Our results will be valuable in cancer-related gene function annotation and for the evaluation of cancer patients' prognosis.

2681 related Products with: Identification of cancer prognosis-associated functional modules using differential co-expression networks.

CA125, Ovarian Cancer An CA125, Ovarian Cancer An CA125, Ovarian Cancer An Expression Media Products Expression Media Products Expression Media Products DNA (cytosine 5) methyltr REASTAIN® Quick Diff Kit Mouse Anti-Human CA19-9 ( PSA test card, serum , Ca Fecal Occult Blood test s Rat ovarian cancer marker

Related Pathways

  •  
  • No related Items