Only in Titles

           Search results for: Rat Anti-IAA Monoclonal Antibody, Alexa 488 Conjugated   

paperclip

#24131101   2013/12/05 Save this To Up

Nanoparticles in porous microparticles prepared by supercritical infusion and pressure quench technology for sustained delivery of bevacizumab.

Nanoparticles in porous microparticles (NPinPMP), a novel delivery system for sustained delivery of protein drugs, was developed using supercritical infusion and pressure quench technology, which does not expose proteins to organic solvents or sonication. The delivery system design is based on the ability of supercritical carbon dioxide (SC CO2) to expand poly(lactic-co-glycolic) acid (PLGA) matrix but not polylactic acid (PLA) matrix. The technology was applied to bevacizumab, a protein drug administered once a month intravitreally to treat wet age related macular degeneration. Bevacizumab coated PLA nanoparticles were encapsulated into porosifying PLGA microparticles by exposing the mixture to SC CO2. After SC CO2 exposure, the size of PLGA microparticles increased by 6.9-fold. Confocal and scanning electron microscopy studies demonstrated the expansion and porosification of PLGA microparticles and infusion of PLA nanoparticles inside PLGA microparticles. In vitro release of bevacizumab from NPinPMP was sustained for 4 months. Size exclusion chromatography, fluorescence spectroscopy, circular dichroism spectroscopy, SDS-PAGE, and ELISA studies indicated that the released bevacizumab maintained its monomeric form, conformation, and activity. Further, in vivo delivery of bevacizumab from NPinPMP was evaluated using noninvasive fluorophotometry after intravitreal administration of Alexa Fluor 488 conjugated bevacizumab in either solution or NPinPMP in a rat model. Unlike the vitreal signal from Alexa-bevacizumab solution, which reached baseline at 2 weeks, release of Alexa-bevacizumab from NPinPMP could be detected for 2 months. Thus, NPinPMP is a novel sustained release system for protein drugs to reduce frequency of protein injections in the therapy of back of the eye diseases.

1323 related Products with: Nanoparticles in porous microparticles prepared by supercritical infusion and pressure quench technology for sustained delivery of bevacizumab.

BYL-719 Mechanisms: PI3K- (7’-Benzyloxy-indolymet Breast invasive ductal ca Multiple lung carcinoma ( Indole 7 carboxaldehyde ( Indole 3 carboxaldehyde ( Indole 6 carboxaldehyde ( Indole 5 carboxaldehyde ( Indole 4 carboxaldehyde ( Pressure Injection Cell, Pressure Injection Cell w Syringe pump can be contr

Related Pathways

paperclip

#23734705   2013/08/05 Save this To Up

Light-activated, in situ forming gel for sustained suprachoroidal delivery of bevacizumab.

A light-activated polycaprolactone dimethacrylate (PCM) and hydroxyethyl methacrylate (HEMA) based gel network was developed to sustain the release of stable, active bevacizumab (an anti-VEGF antibody used to treat choroidal neovascularization) and used to assess sustained ex vivo delivery in rabbit eyes and in vivo delivery in rat eyes following in situ gel formation in the suprachoroidal space. PCM was synthesized from polycaprolactone diol (PCD) and evaluated using NMR spectroscopy. PCM was used to cross-link HEMA in the presence of 365 nm UV light and 2,2-dimethoxy-2-phenylacetophenone (DMPA) as a photoinitiator. Bevacizumab was entrapped in the gel using three different cross-linking durations of 3, 7, and 10 min. In vitro release of bevacizumab in PBS pH 7.4 at 37 °C during a 4 month study was quantified using a VEGF-binding based ELISA. The stability of released bevacizumab was monitored by size exclusion chromatography (SEC) and circular dichroism. Alexa Fluor 488 dye conjugated bevacizumab mixed with polymers was injected suprachoroidally in rabbit eyes to study the effect of different cross-linking durations on the spread of the dye conjugated bevacizumab. In vivo delivery was assessed in Sprague-Dawley (SD) rats by injecting Alexa Fluor 488 dye conjugated bevacizumab mixed with polymers followed by cross-linking for 10 min. Spread in the rabbit eyes and in vivo delivery in rat eyes was monitored noninvasively using a fundus camera and Fluorotron Master. The formation of PCM was confirmed by the disappearance of hydroxyl peak in NMR spectra. A cross-linking duration of 10 min resulted in a burst release of 21% of bevacizumab. Other cross-linking durations had ≥62% burst release. Bevacizumab release from 10 min cross-linked gel was sustained for ∼4 months. Release samples contained ≥96.1% of bevacizumab in the monomeric form as observed in SEC chromatograms. Circular dichroism confirmed that secondary β-sheet structure of bevacizumab was maintained after release from the gel. As the cross-linking duration was increased to 10 min, the gel/antibody was better confined at the injection site in excised rabbit eye suprachoroidal space. Delivery of Alexa Fluor 488 dye conjugated bevacizumab was sustained for at least 60 days in the suprachoroidal space of SD rats. PCM and HEMA gel sustained bevacizumab release for 4 months and maintained the stability and VEGF-binding activity of bevacizumab. Therefore, light-activated PCM and HEMA gel is suitable for in situ gel formation and sustained protein delivery in the suprachoroidal space.

1545 related Products with: Light-activated, in situ forming gel for sustained suprachoroidal delivery of bevacizumab.

DPP IV Inhibitor, K 579; DPP IV Inhibitor, K 579; succinate-CoA ligase, GDP succinate-CoA ligase, ADP (7’-Benzyloxy-indolymet Breast invasive ductal ca Goat Anti-Human Gelsolin Activated Protein C Inact Multiple lung carcinoma ( Lymphoma array, together Indole 7 carboxaldehyde ( Indole 3 carboxaldehyde (

Related Pathways

paperclip

#16786579   2006/08/24 Save this To Up

Monoclonal antibody Rip specifically recognizes 2',3'-cyclic nucleotide 3'-phosphodiesterase in oligodendrocytes.

The antigen recognized with monoclonal antibody (mAb) Rip (Rip-antigen) has been long used as a marker of oligodendrocytes and myelin sheaths. However, the identity of Rip-antigen has yet to be elucidated. We herein identified the Rip-antigen. No signal recognized by mAb-Rip was detected by immunoblot analyses in the rat brain, cultured rat oligodendrocytes, or the oligodendrocyte cell line CG-4. As this antibody worked very well on immunocytochemistry and immunohistochemistry, Rip-antigen was immunopurified with mAb-Rip from the differentiated CG-4 cells. Eight strong-intensity bands thus appeared on 5-20% SDS-PAGE with SYPRO ruby fluorescence staining. To identify these molecules, each band extracted from the gel was analyzed by MALDI-QIT/TOF mass spectrometry. We found an interesting molecule in the oligodendrocytes from an approximately 44-kDa band as 2',3'-cyclic nucleotide 3'-phosphodiesterase (CNP). To test whether CNP was recognized by mAb-Rip, double-immunofluorescence staining was performed by using Alexa Fluor 488-conjugated mAb-Rip and Alexa Fluor 568-conjugated mAb-CNP in the rat cerebellum, mouse cerebellum, cultured rat oligodendrocytes, and CG-4 cells. The Rip-antigen was colocalized with CNP in these cells and tissues. To provide direct evidence that CNP was recognized by mAb-Rip, rat Cnp1-transfected HEK293T cells were used for double-immunofluorescence staining with mAb-Rip and mAb-CNP. The Rip-antigen was colocalized with CNP in rat Cnp1-transfected HEK293T cells, but the antigen was not detected by mAb-Rip and mAb-CNP in mock-transfected HEK293T cells. Overall, we have demonstrated that the antigen labeled with mAb-Rip is CNP in the oligodendrocytes.

2473 related Products with: Monoclonal antibody Rip specifically recognizes 2',3'-cyclic nucleotide 3'-phosphodiesterase in oligodendrocytes.

MONOBODIES (Monoclonal An MONOBODIES (Monoclonal An YKL-39 antibody Source Ra Rabbit Anti-ACTH (18-39) Rabbit Anti-ACTH (18-39) Rabbit Anti-ACTH (18-39) Rabbit Anti-ACTH (18-39) Rabbit Anti-ACTH (18-39) Rabbit Anti-ACTH (18-39) Rabbit Anti-ACTH (18-39) Rabbit Anti-ACTH (18-39) Rabbit Anti-ACTH (18-39)

Related Pathways

  •  
  • No related Items