Only in Titles

           Search results for: Recombinant Human ADAM12 Proteins    

paperclip

#28425175   2017/04/20 Save this To Up

Haemorrhagic snake venom metalloproteases and human ADAMs cleave LRP5/6, which disrupts cell-cell adhesions in vitro and induces haemorrhage in vivo.

Snake venom metalloproteases (SVMPs) are members of the a disintegrin and metalloprotease (ADAM) family of proteins, as they possess similar domains. SVMPs are known to elicit snake venom-induced haemorrhage; however, the target proteins and cleavage sites are not known. In this work, we identified a target protein of vascular apoptosis-inducing protein 1 (VAP1), an SVMP, relevant to its ability to induce haemorrhage. VAP1 disrupted cell-cell adhesions by relocating VE-cadherin and γ-catenin from the cell-cell junction to the cytosol, without inducing proteolysis of VE-cadherin. The Wnt receptors low-density lipoprotein receptor-related proteins 5 and 6 (LRP5/6) are known to promote catenin relocation, and are rendered constitutively active in Wnt signalling by truncation. Thus, we examined whether VAP1 cleaves LRP5/6 to induce catenin relocation. Indeed, we found that VAP1 cleaved the extracellular region of LRP6 and LRP5. This cleavage removes four inhibitory β-propeller structures, resulting in activation of LRP5/6. Recombinant human ADAM8 and ADAM12 also cleaved LRP6 at the same site. An antibody against a peptide including the LRP6-cleavage site inhibited VAP1-induced VE-cadherin relocation and disruption of cell-cell adhesions in cultured cells, and blocked haemorrhage in mice in vivo. Intriguingly, animals resistant to the effects of haemorrhagic snake venom express variants of LRP5/6 that lack the VAP1-cleavage site, or low-density lipoprotein receptor domain class A domains involved in formation of the constitutively active form. The results validate LRP5/6 as physiological targets of ADAMs. Furthermore, they indicate that SVMP-induced cleavage of LRP5/6 causes disruption of cell-cell adhesion and haemorrhage, potentially opening new avenues for the treatment of snake bites.

1886 related Products with: Haemorrhagic snake venom metalloproteases and human ADAMs cleave LRP5/6, which disrupts cell-cell adhesions in vitro and induces haemorrhage in vivo.

Cultrex In Vitro Angiogen Rabbit Anti-Cell death in Rabbit Anti-Cell death in CELLKINES Natural Human I Jurkat Cell Extract (Indu Jurkat Cell Extract (Indu Jurkat Cell Extract (Indu Jurkat Cell Extract (Indu Macrophage Colony Stimula Macrophage Colony Stimula Stat3 Peptide Inhibitor, Stat3 Peptide Inhibitor,

Related Pathways

paperclip

#26477568   2015/10/19 Save this To Up

Targeting autocrine HB-EGF signaling with specific ADAM12 inhibition using recombinant ADAM12 prodomain.

Dysregulation of ErbB-family signaling underlies numerous pathologies and has been therapeutically targeted through inhibiting ErbB-receptors themselves or their cognate ligands. For the latter, "decoy" antibodies have been developed to sequester ligands including heparin-binding epidermal growth factor (HB-EGF); however, demonstrating sufficient efficacy has been difficult. Here, we hypothesized that this strategy depends on properties such as ligand-receptor binding affinity, which varies widely across the known ErbB-family ligands. Guided by computational modeling, we found that high-affinity ligands such as HB-EGF are more difficult to target with decoy antibodies compared to low-affinity ligands such as amphiregulin (AREG). To address this issue, we developed an alternative method for inhibiting HB-EGF activity by targeting its cleavage from the cell surface. In a model of the invasive disease endometriosis, we identified A Disintegrin and Metalloproteinase 12 (ADAM12) as a protease implicated in HB-EGF shedding. We designed a specific inhibitor of ADAM12 based on its recombinant prodomain (PA12), which selectively inhibits ADAM12 but not ADAM10 or ADAM17. In endometriotic cells, PA12 significantly reduced HB-EGF shedding and resultant cellular migration. Overall, specific inhibition of ligand shedding represents a possible alternative to decoy antibodies, especially for ligands such as HB-EGF that exhibit high binding affinity and localized signaling.

1292 related Products with: Targeting autocrine HB-EGF signaling with specific ADAM12 inhibition using recombinant ADAM12 prodomain.

Recombinant Human ADAM12 Recombinant Human ADAM12 Recombinant Human ADAM12 Recombinant Human EGF Pro Recombinant Human EGF Pro Recombinant Human EGF Pro Recombinant Mouse EGF Pro Recombinant Mouse EGF Pro Recombinant Mouse EGF Pro Recombinant Rat EGF Prote Recombinant Rat EGF Prote Recombinant Rat EGF Prote

Related Pathways

paperclip

#24116709   2013/11/26 Save this To Up

Cellular reprogramming into a brown adipose tissue-like phenotype by co-expression of HB-EGF and ADAM 12S.

Abnormal adipogenesis leads to excessive fat accumulation and several health disorders. Mouse fibroblasts (MLC) transfected with ADAM 12S and HB-EGF promoted lipid accumulation. Addition of KBR-7785, an ADAM 12S inhibitor, to HB-EGF/ADAM 12S expressing cells suppressed adipogenesis. BrdU incorporation was attenuated and enhanced mitotracker staining was observed in HB-EGF/ADAM 12S cells. Quantitative real time RT-PCR resulted in elevated levels of expression of three brown adipose tissue (BAT) genes (PRDM16, PGC-1α, and UCP-1), while expression levels of the three white adipose tissue (WAT) genes (PPARγ, C/EBPα, and AKT-1) were unaltered in HB-EGF/ADAM 12S cells. Amino- or carboxy-terminal deletions of HB-EGF (HB-EGFΔN and HB-EGFΔC) co-expressed with ADAM 12S stimulated lipid accumulation. Human epidermoid carcinoma cells (A431) also exhibited lipid accumulation by HB-EGF/ADAM 12S co-expression. These studies suggest ADAM 12S and HB-EGF are involved in cellular plasticity resulting in the production of BAT-like cells and offers insight into novel therapeutic approaches for fighting obesity.

1981 related Products with: Cellular reprogramming into a brown adipose tissue-like phenotype by co-expression of HB-EGF and ADAM 12S.

Breast cancer mid density Mouse anti human HB-EGF A Adamantinoma and hamartom Adipose tissue disease sp Sarcoma tissue array of s ELISA Kit for A Disinteg Adeno Lenti EGFP (hybrid) Actin binding EGFP ADAMTS7 Expression Media Products Expression Media Products Expression Media Products

Related Pathways

paperclip

#20533908   2010/07/28 Save this To Up

Selective inhibition of ADAM12 catalytic activity through engineering of tissue inhibitor of metalloproteinase 2 (TIMP-2).

The disintegrin and metalloprotease ADAM12 has important functions in normal physiology as well as in diseases, such as cancer. Little is known about how ADAM12 confers its pro-tumorigenic effect; however, its proteolytic capacity is probably a key component. Thus selective inhibition of ADAM12 activity may be of great value therapeutically and as an investigative tool to elucidate its mechanisms of action. We have previously reported the inhibitory profile of TIMPs (tissue inhibitor of metalloproteinases) against ADAM12, demonstrating in addition to TIMP-3, a unique ADAM-inhibitory activity of TIMP-2. These findings strongly suggest that it is feasible to design a TIMP mutant selectively inhibiting ADAM12. With this purpose, we characterized the molecular determinants of the ADAM12-TIMP complex formation as compared with known molecular requirements for TIMP-mediated inhibition of ADAM17/TACE (tumour necrosis factor alpha-converting enzyme). Kinetic analysis using a fluorescent peptide substrate demonstrated that the molecular interactions of N-TIMPs (N-terminal domains of TIMPs) with ADAM12 and TACE are for the most part comparable, yet revealed strikingly unique features of TIMP-mediated ADAM12 inhibition. Intriguingly, we found that removal of the AB-loop in N-TIMP-2, which is known to impair its interaction with TACE, resulted in increased affinity to ADAM12. Importantly, using a cell-based epidermal growth factor-shedding assay, we demonstrated for the first time an inhibitory activity of TIMPs against the transmembrane ADAM12-L (full-length ADAM12), verifying the distinctive inhibitory abilities of N-TIMP-2 and engineered N-TIMP-2 mutants in a cellular environment. Taken together, our findings support the idea that a distinctive ADAM12 inhibitor with future therapeutic potential can be designed.

1358 related Products with: Selective inhibition of ADAM12 catalytic activity through engineering of tissue inhibitor of metalloproteinase 2 (TIMP-2).

ELISA kit CLGI,Collagenas Rat monoclonal anti mouse Ofloxacin CAS Number [824  EpiQuik Superoxide Dism Caspase-3 Inhibitor Z-DEV Caspase-3 Inhibitor Z-DEV Caspase 3 Inhibitor Z DEV Caspase 3 Inhibitor Z DEV Caspase-Family Inhibitor Caspase-Family Inhibitor Caspase Family Inhibitor Caspase Family Inhibitor

Related Pathways

paperclip

#19796686   2009/11/16 Save this To Up

LGI1-associated epilepsy through altered ADAM23-dependent neuronal morphology.

Most epilepsy genes encode ion channels, but the LGI1 gene responsible for autosomal dominant partial epilepsy with auditory features produces a secreted protein. LGI1 is suggested to regulate PSD-95 via ADAM22. However, no unbiased screen of LGI1 action has been conducted. Here, we searched for brain genes supporting high affinity LGI-1 binding. ADAM23 was the only LGI1 interactor identified. The related proteins, ADAM22 and ADAM11, but not ADAM12, bind LGI1. Neither ADAM23 nor ADAM11, nor some forms of ADAM22, contain PDZ-interacting sequences, suggesting PSD-95-independent mechanisms in ADPEAF. Because ADAMs modulate integrins, we examined LGI1 effect on neurite outgrowth. LGI1 increases outgrowth from wild-type but not ADAM23-/- neurons. Furthermore, CA1 pyramidal neurons of ADAM23-/- hippocampi have reduced dendritic arborization. ADAM23-/- mice exhibit spontaneous seizures, while ADAM23+/- mice have decreased seizure thresholds. Thus, LGI1 binding to ADAM23 is necessary to correctly pattern neuronal morphology and altered anatomical patterning contributes to ADPEAF.

2343 related Products with: LGI1-associated epilepsy through altered ADAM23-dependent neuronal morphology.

Malic enzyme 2, NAD(+) de Anti VGLUT 1 Rat, polyclo Anti Rat VGLUT 2, Rabbit Human neuronal nuclear au Human neuronal nuclear au PABP1-dependent poly A-sp voltage-dependent calcium Rabbit Anti-Tyrosine Hydr Rabbit Anti-Tyrosine Hydr Rabbit Anti-Tyrosine Hydr Rabbit Anti-Tyrosine Hydr Rabbit Anti-Tyrosine Hydr

Related Pathways

paperclip

#19769962   2009/11/27 Save this To Up

ADAM12 localizes with c-Src to actin-rich structures at the cell periphery and regulates Src kinase activity.

ADAM12 is an active metalloprotease playing an important role in tumour progression. Human ADAM12 exists in two splice variants: a long transmembrane form, ADAM12-L, and a secreted form, ADAM12-S. The subcellular localization of ADAM12-L is tightly regulated and involves intracellular interaction partners and signalling proteins. We demonstrate here a c-Src-dependent redistribution of ADAM12-L from perinuclear areas to actin-rich Src-positive structures at the cell periphery, and identified two separate c-Src binding sites in the cytoplasmic tail of ADAM12-L that interact with the SH3 domain of c-Src with different binding affinities. The association between ADAM12-L and c-Src is transient, but greatly stabilized when the c-Src kinase activity is disrupted. In agreement with this observation, kinase-active forms of c-Src induce ADAM12-L tyrosine phosphorylation. Interestingly, ADAM12-L was also found to enhance Src kinase activity in response to external signals, such as integrin engagement. Thus, we suggest that activated c-Src binds, phosphorylates, and redistributes ADAM12-L to specific sites at the cell periphery, which may in turn promote signalling mechanisms regulating cellular processes with importance in cancer.

1707 related Products with: ADAM12 localizes with c-Src to actin-rich structures at the cell periphery and regulates Src kinase activity.

Cell Meter™ Fluorimetri Cell Meter™ Fluorimetri p130Cas-associated protei Goat Anti-Human TOM1L1 SR FDA Standard Frozen Tissu FDA Standard Frozen Tissu Oral squamous cell cancer Human Beta-cell Attractin ATM Kinase Inhibitor ATM Kinase Inhibitor, KU- ATM Kinase Inhibitor, KU- Cell Navigator™ F Actin

Related Pathways

paperclip

#19213876   2009/09/16 Save this To Up

Role of A disintegrin and metalloprotease-12 in neutrophil recruitment induced by airway epithelium.

Among proteases, metalloproteases are implicated in tissue remodeling, as shown in numerous diseases including allergy. ADAMs (A Disintegrin And Metalloprotease) metalloproteases are implicated in physiologic processes such as cytokine and growth factor shedding, cell migration, adhesion, or repulsion. Our aim was to measure ADAM-12 expression in airway epithelium and to define its role during the allergic response. To raise this question, we analyzed the ADAM-12 expression ex vivo after allergen exposure in patients with allergic rhinitis and in vitro in cultured primary human airway epithelial cells (AEC). Clones of BEAS-2B cells transfected with the full-length form of ADAM-12 were generated to study the consequences of ADAM-12 up-regulation on AEC function. After allergen challenge, a strong increase of ADAM-12 expression was observed in airway epithelium from patients with allergic rhinitis but not from control subjects. In contrast with the other HB-epidermal growth factor sheddases, ADAM-10 and -17, TNF-alpha in vitro increased the expression of ADAM-12 by AEC, an effect amplified by IL-4 and IL-13. Up-regulation of ADAM-12 in AEC increased the expression of alpha3 and alpha4 integrins and to the modulation of cell migration on fibronectin but not on collagen. Moreover, overexpression of ADAM-12 in BEAS-2B enhanced the secretion of CXCL1 and CXCL8 and their capacity to recruit neutrophils. CD47 was strongly decreased by ADAM-12 overexpression, a process associated with a reduced adhesion of neutrophils. These effects were mainly dependent on epidermal growth factor receptor activation. In summary, ADAM-12 is produced during allergic reaction by AEC and might increase neutrophil recruitment within airway mucosa.

1920 related Products with: Role of A disintegrin and metalloprotease-12 in neutrophil recruitment induced by airway epithelium.

ELISA Kit for A Disinteg Anti AGO2 Human, Monoclon Anti AGO2 Mouse, Monoclon Anti AGO2 Human, Monoclon Anti AGO2 Mouse, Monoclon Caspase-12 Inhibitor Z-AT Caspase-12 Inhibitor Z-AT Caspase 12 Inhibitor Z AT Caspase-12 Inhibitor Z-AT Caspase-12 Inhibitor Z-AT Caspase 12 Inhibitor Z AT Rat Anti-Mouse Interleuki

Related Pathways

paperclip

#18081311   2008/01/09 Save this To Up

Catalytic properties of ADAM12 and its domain deletion mutants.

Human ADAM12 (a disintegrin and metalloproteinase) is a multidomain zinc metalloproteinase expressed at high levels during development and in human tumors. ADAM12 exists as two splice variants: a classical type 1 membrane-anchored form (ADAM12-L) and a secreted splice variant (ADAM12-S) consisting of pro, catalytic, disintegrin, cysteine-rich, and EGF domains. Here we present a novel activity of recombinant ADAM12-S and its domain deletion mutants on S-carboxymethylated transferrin (Cm-Tf). Cleavage of Cm-Tf occurred at multiple sites, and N-terminal sequencing showed that the enzyme exhibits restricted specificity but a consensus sequence could not be defined as its subsite requirements are promiscuous. Kinetic analysis revealed that the noncatalytic C-terminal domains are important regulators of Cm-Tf activity and that ADAM12-PC consisting of the pro domain and catalytic domain is the most active on this substrate. It was also observed that NaCl inhibits ADAM12. Among the tissue inhibitors of metalloproteinases (TIMP) examined, the N-terminal domain of TIMP-3 (N-TIMP-3) inhibits ADAM12-S and ADAM12-PC with low nanomolar Ki(app) values while TIMP-2 inhibits them with a slightly lower affinity (9-44 nM). However, TIMP-1 is a much weaker inhibitor. N-TIMP-3 variants that lack MMP inhibitory activity but retained the ability to inhibit ADAM17/TACE failed to inhibit ADAM12. These results indicate unique enzymatic properties of ADAM12 among the members of the ADAM family of metalloproteinases.

1032 related Products with: Catalytic properties of ADAM12 and its domain deletion mutants.

Recombinant Human MMP14 ( to Calpain-11; Domain-II Anti-ADAM-12 (A Disintigr Anti-ADAM-15 (A Disintigr Anti-ADAM-17 (A Disintegr Anti ADAM 17 (A Disintegr Anti-ACE-1 (Angiotension Anti-ACE-1 (Angiotension Anti-ACE-1 (Angiotension Anti-ACE-2 (Angiotension- Anti-BACE-1 (Memapsin-2, to Matriptase-1 (MTSP-1,

Related Pathways

paperclip

#16455653   2006/04/03 Save this To Up

ADAM12 is a four-leafed clover: the excised prodomain remains bound to the mature enzyme.

The ADAMs (a disintegrin and metalloprotease) comprise a family of multidomain proteins with metalloprotease, cell adhesion, and signaling activities. Human ADAM12, which is implicated in diseases such as cancer, is expressed in two splice forms, the transmembrane ADAM12-L and the shorter and soluble ADAM12-S. ADAM12 is synthesized as a zymogen with the prodomain keeping the metalloprotease inactive through a cysteine-switch mechanism. Maturation and activation of the protease involves the cleavage of the prodomain in the trans-Golgi or possibly at the cell surface by a furin-peptidase. The aim of the present study was to determine the fate of the prodomain following furin cleavage. Here we demonstrate that, following cleavage of the human ADAM12-S prodomain in the trans-Golgi by a furin-peptidase, the prodomain remains non-covalently associated with the mature molecule. Accordingly, both the 68-kDa mature form of ADAM12-S and the 25-kDa prodomain could be detected using domain-specific antisera in immunoprecipitation and Western blot analyses of human serum ADAM12 and purified recombinant human ADAM12. Using electron microscopy after negative staining we have furthermore obtained the first visualization of a full-length ADAM molecule, human ADAM12-S, and report that it appears to be a compact clover composed of four globular domains, one of which is the prodomain. Finally, our data demonstrate that the presence of the metalloprotease domain appears to be sufficient for the prodomain to remain associated with the mature ADAM12-S. Thus, we conclude that the prodomain of human ADAM12-S is an integral domain of the mature molecule and as such might have specific biological functions in the extracellular space.

2403 related Products with: ADAM12 is a four-leafed clover: the excised prodomain remains bound to the mature enzyme.

FDA Standard Frozen Tissu FDA Standard Frozen Tissu FDA Standard Frozen Tissu FDA Standard Frozen Tissu Shiga Toxin 1 antibody, M Shiga Toxin 2 antibody, M Cholera toxin antibody, M Clostridium botulinum D T Clostridum difficile toxi Clostridum difficile toxi Clostridum difficile toxi Clostridum difficile toxi

Related Pathways

paperclip

#16213489   2005/10/17 Save this To Up

ADAM12-mediated focal adhesion formation is differently regulated by beta1 and beta3 integrins.

ADAM12, adisintegrin and metalloprotease, has been demonstrated to be upregulated in human malignant tumors and to accelerate the malignant phenotype in a mouse model for breast cancer. ADAM12 is a substrate for beta1 integrins and may affect tumor and stromal cell behavior through its binding to beta1 integrins. Here, we report that cells deficient in beta1 integrin or overexpressing beta3 integrin can bind to recombinant full-length human ADAM12 via beta3 integrin. Furthermore, cell binding to ADAM12 via beta3 integrin results in the formation of focal adhesions, which are not formed upon beta1 integrin-mediated cell attachment. We also show that RhoA is involved in beta3 integrin-mediated focal adhesion formation.

2640 related Products with: ADAM12-mediated focal adhesion formation is differently regulated by beta1 and beta3 integrins.

B-Phycoerythrin antibody 2-Amino Benzimidazole Su 2-Amino Benzimidazole Su EZH2 KMT6 antibody Isoty Interleukin-34 IL34 (N-t Interleukin-34 IL34 anti CRC3 CD3 (bispecific) Cl 2,3 dinor 6 keto Prostag ROR1 Clone '1B4 antibody RBPMS HERMES Clone '1C12 Glucokinase, islet isofor Glucokinase, islet isofor

Related Pathways