Only in Titles

           Search results for: Recombinant Human APCS Proteins    

paperclip

#27879248   2016/11/23 Save this To Up

High-fat diet-induced obesity regulates MMP3 to modulate depot- and sex-dependent adipose expansion in C57BL/6J mice.

Increased adipocyte size is hypothesized to signal the recruitment of adipose progenitor cells (APCs) to expand tissue storage capacity. To investigate depot and sex differences in adipose growth, male and female C57BL/6J mice (10 wk-old) were challenged with high-fat (HF) or low-fat (LF) diets (D) for 14 wk. The HFD increased gonadal (GON) depot weight by adipocyte hypertrophy and hyperplasia in females but hypertrophy alone in males. In both sexes, inguinal (ING) adipocytes were smaller than GON, and depot expansion was due to hypertrophy. Matrix metalloproteinase 3 (Mmp3), an antiadipogenic factor, and its inhibitor Timps modulate the extracellular matrix remodeling needed for depot expansion. Mmp3 mRNA was depot different (ING > GON), higher in females than males and mainly expressed in APCs. In males, HFD-induced obesity increased tissue and APC Mmp3 mRNA levels and MMP3 protein and enzymatic activity. In females however, HFD significantly decreased MMP3 protein without affecting its mRNA levels. MMP3 activity also decreased (significant in ING). Timp4 mRNA was expressed mainly in adipocytes, and HFD-induced obesity tended to increase the ratio of TIMP4 to MMP3 protein in females, whereas it decreased it in males. Overexpression of Mmp3 in 3T3-L1 preadipocytes or rhMMP3 protein added to primary human preadipocytes inhibited differentiation, whereas rhTIMP4 improved adipogenesis and attenuated the inhibitory effect of rhMMP3. These data suggest that HFD-induced obesity downregulates APC MMP3 expression to trigger adipogenesis, and adipocyte TIMP4 may modulate this process to regulate hyperplastic vs. hypertrophic adipose tissue expansion, fat distribution, and metabolic health in a sex- and depot-dependent manner.

2713 related Products with: High-fat diet-induced obesity regulates MMP3 to modulate depot- and sex-dependent adipose expansion in C57BL/6J mice.

Anti AGO2 Human, Monoclon Anti AGO2 Mouse, Monoclon Anti AGO2 Human, Monoclon Anti AGO2 Mouse, Monoclon Human Epstein-Barr Virus Jurkat Cell Extract (Indu Jurkat Cell Extract (Indu Jurkat Cell Extract (Indu Jurkat Cell Extract (Indu Mouse Epstein-Barr Virus TGF beta induced factor 2 Recombinant Human Interfe

Related Pathways

paperclip

#27294559   2016/07/10 Save this To Up

T-cell antigens of Mycobacterium immunogenum, an etiological agent of occupational hypersensitivity pneumonitis.

The T lymphocyte-mediated immune lung disease hypersensitivity pneumonitis (HP) in machinists is poorly understood for disease mechanisms and diagnosis due in part to lack of information on causative T-cell antigens of the etiological agent Mycobacterium immunogenum (MI). Therefore, overall objective of the current study was to identify T-cell reactive antigens of this recently recognized pathogen. In this direction, purified recombinant form of five of the seroreactive proteins (reported in our initial study), including three cell wall-associated (arbitrarily designated as antigens A through C) and two secretory (AgD & AgE), were examined for their potential to activate antigen-presenting cells (APCs) viz. alveolar macrophages and human monocyte-derived dendritic cells (DCs) and for T-cell reactivity. All five proteins strongly activated APCs by inducing inflammatory cytokines (TNF-α, IL-6 & IL-1α) and nitric oxide (NO), albeit to a varying extent (AgE≥AgD>AgB≥AgA≥AgC), implying their differential potential for activation of APCs. However, only two of the five proteins (AgA, AgD) showed significant T-cell response (T lymphocyte proliferation and IFN-γ secretion) when tested using sensitized T-cells from MI-induced HP mouse model. These antigens also activated the human naïve CD4(+) T cells in presence of autologous DCs as measured using ELISPOT for IFN-γ. Immuno-informatic analysis predicted that the identified T-cell antigens (AgA and AgD) bind more number of class I and class II HLA alleles as compared with the reference immuno-dominant antigens ESAT-6 and CFP-10 from the tuberculous mycobacterial species M. tuberculosis. Predicted human population coverage for the epitopes of AgA (90.87%) and AgD (88.09%) was also higher as compared to those for the reference antigens ESAT-6 (82.42%) and CFP-10 (80.21%). These two antigens were further predicted to be highly immunogenic for class I peptide MHC (pMHC) complex as compared to the reference antigens. Collectively, our results imply that AgA and AgD are T-cell antigens with a high HLA binding frequency as well as population coverage for HLA alleles. This first report on T-cell antigens and epitopes of M. immunogenum is significant as it is expected to open up avenues for understanding pathogenesis mechanisms and developing T-cell-based immunodiagnostic tools for this poorly investigated occupational lung disease.

2804 related Products with: T-cell antigens of Mycobacterium immunogenum, an etiological agent of occupational hypersensitivity pneumonitis.

Recombinant Viral Antige Recombinant Viral antige Recombinant Viral antige Recombinant Viral antige Recombinant Viral antige Recombinant Viral antige Recombinant Viral antige Recombinant Viral antige Recombinant Viral antige Recombinant Viral antige Recombinant Viral antige Recombinant Viral antige

Related Pathways

paperclip

#27213160   2016/05/23 Save this To Up

Scaffolded Antigens in Yeast Cell Particle Vaccines Provide Protection against Systemic Polyoma Virus Infection.

Background. U65, a self-aggregating peptide scaffold, traps fused protein antigens in yeast cells. Conversion to Yeast Cell Particle (YCP) vaccines by partial removal of surface mannoproteins exposes β-glucan, mediating efficient uptake by antigen-presenting cells (APCs). YCP vaccines are inexpensive, capable of rapid large-scale production and have potential for both parenteral and oral use. Results. YCP processing by alkaline hydrolysis exposes up to 20% of the glucan but converts scaffolded antigen and internal yeast proteins into a common aggregate, preventing selective yeast protein removal. For U65-green fluorescent protein (GFP) or U65-Apolipoprotein A1 (ApoA1) subcutaneous vaccines, maximal IgG responses in mice required 10% glucan exposure. IgG responses to yeast proteins were 5-fold lower. Proteolytic mannoprotein removal produced YCPs with only 6% glucan exposure, insufficiently porous for selective removal of even native yeast proteins. Vaccine efficacy was reduced 10-fold. Current YCP formulations, therefore, are not suitable for human use but have considerable potential for use in feed animal vaccines. Significantly, a YCP vaccine expressing a GFP fusion to VP1, the murine polyoma virus major capsid protein, after either oral or subcutaneous administration, protected mice against an intraperitoneal polyoma virus challenge, reducing viral DNA levels in spleen and liver by >98%.

2337 related Products with: Scaffolded Antigens in Yeast Cell Particle Vaccines Provide Protection against Systemic Polyoma Virus Infection.

Recombinant Hemagglutinin MarkerGeneTM in vivo lacZ Adeno Associated Virus (A Adeno Associated Virus (A Recombinant Viral Antige anti HSV (II) gB IgG1 (mo anti HCMV IE pp65 IgG1 (m anti HCMV gB IgG1 (monocl CELLKINES Natural Human I CELLKINES INTERLEUKIN 2 ( CELLKINES INTERLEUKIN 2 ( Human Epstein-Barr Virus

Related Pathways

paperclip

#27118519   2016/05/12 Save this To Up

Recent advances in nontoxic Escherichia coli heat-labile toxin and its derivative adjuvants.

The nontoxic heat-labile enterotoxin (LT) of Escherichia coli and the B subunit of LT (LTB) have been extensively studied as potent vaccine adjuvants. Areas covered: This review covers the area of enterotoxin based vaccine adjuvant and summarizes the development of nontoxic LT mutant (mLT) and LTB and their potency as oral, parenteral and injection adjuvants. Recent evidences indicated that the mechanism of LTB adjuvanticity was to enhance the turnover of dendritic cells (DCs) in spleen and increase DCs capacity to perform as antigen presentation cells (APCs) encountered with T cells. LTB also induces B and T cells clustering and delay/arrest in T-cell division following endocytosis or B-cell receptor (BCR) uptaking of antigen in a ganglioside-mediated manner. Expert commentary: It is pointed out that the immunogenicity of LTB (or LT) is more important than the receptor binding property (or ADP-ribosylation activity) for the adjuvanticity of LT toxoid. The immunogenicity of LTB (or LT) might confer unknown characteristics to maintain LT toxoid adjuvanticity.

1271 related Products with: Recent advances in nontoxic Escherichia coli heat-labile toxin and its derivative adjuvants.

Mouse Anti-E. coli Labile Mouse Anti-E. coli Labile Mouse Anti-E. coli heat-l Mouse Anti-E. coli heat-l Sterile filtered goat se Sterile filtered goat se Sterile filtered mouse s Sterile filtered rat ser ESCHERICHIA COLI clinical ESCHERICHIA COLI 0111 NM Recombinant Human Inhibin Recombinant Human Inhibin

Related Pathways

paperclip

#27076643   2016/06/11 Save this To Up

Diminished Innate Antiviral Response to Adenovirus Vectors in cGAS/STING-Deficient Mice Minimally Impacts Adaptive Immunity.

Infection by adenovirus, a nonenveloped DNA virus, induces antiviral innate and adaptive immune responses. Studies of transformed human and murine cell lines using short hairpin RNA (shRNA) knockdown strategies identified cyclic guanine adenine synthase (cGAS) as a pattern recognition receptor (PRR) that contributes to the antiadenovirus response. Here we demonstrate how the cGAS/STING cascade influences the antiviral innate and adaptive immune responses in a murine knockout model. Using knockout bone marrow-derived dendritic cells (BMDCs) and bone marrow-derived macrophages (BMMOs), we determined that cGAS and STING are essential to the induction of the antiadenovirus response in these antigen-presenting cells (APCs) in vitro We next determined how the cGAS/STING cascade impacts the antiviral response following systemic administration of a recombinant adenovirus type 5 vector (rAd5V). Infection of cGAS(-/-) and STING(-/-) mice results in a compromised early antiviral innate response compared to that in wild-type (WT) controls: significantly lower levels of beta interferon (IFN-β) secretion, low levels of proinflammatory chemokine induction, and reduced levels of antiviral transcript induction in hepatic tissue. At 24 h postinfection, levels of viral DNA and reporter gene expression in the liver were similar in all strains. At 28 days postinfection, clearance of infected hepatocytes in cGAS or STING knockout mice was comparable to that in WT C57BL/6 mice. Levels of neutralizing anti-Ad5V antibody were modestly reduced in infected cGAS mice. These data support a dominant role for the cGAS/STING cascade in the early innate antiviral inflammatory response to adenovirus vectors. However, loss of the cGAS/STING pathway did not affect viral clearance, and cGAS deficiency had a modest influence on the magnitude of the antiviral humoral immune response to adenovirus infections.

1715 related Products with: Diminished Innate Antiviral Response to Adenovirus Vectors in cGAS/STING-Deficient Mice Minimally Impacts Adaptive Immunity.

Rat TGF-beta-inducible ea Rat TGF-beta-inducible ea Recombinant Human Interfe Native Influenza HA (A To Native Influenza HA (A To Native Influenza HA (A To Cell Meter™ Fluorimetri Cell Meter™ Fluorimetri Anti beta3 AR Human, Poly T-2 Toxin Mycotoxins ELIS Nycodenz, non ionic, non Homogenizer for 24 sample

Related Pathways

paperclip

#26978390   2016/03/16 Save this To Up

Liposome-Based Adjuvants for Subunit Vaccines: Formulation Strategies for Subunit Antigens and Immunostimulators.

The development of subunit vaccines has become very attractive in recent years due to their superior safety profiles as compared to traditional vaccines based on live attenuated or whole inactivated pathogens, and there is an unmet medical need for improved vaccines and vaccines against pathogens for which no effective vaccines exist. The subunit vaccine technology exploits pathogen subunits as antigens, e.g., recombinant proteins or synthetic peptides, allowing for highly specific immune responses against the pathogens. However, such antigens are usually not sufficiently immunogenic to induce protective immunity, and they are often combined with adjuvants to ensure robust immune responses. Adjuvants are capable of enhancing and/or modulating immune responses by exposing antigens to antigen-presenting cells (APCs) concomitantly with conferring immune activation signals. Few adjuvant systems have been licensed for use in human vaccines, and they mainly stimulate humoral immunity. Thus, there is an unmet demand for the development of safe and efficient adjuvant systems that can also stimulate cell-mediated immunity (CMI). Adjuvants constitute a heterogeneous group of compounds, which can broadly be classified into delivery systems or immunostimulators. Liposomes are versatile delivery systems for antigens, and they can carefully be customized towards desired immune profiles by combining them with immunostimulators and optimizing their composition, physicochemical properties and antigen-loading mode. Immunostimulators represent highly diverse classes of molecules, e.g., lipids, nucleic acids, proteins and peptides, and they are ligands for pattern-recognition receptors (PRRs), which are differentially expressed on APC subsets. Different formulation strategies might thus be required for incorporation of immunostimulators and antigens, respectively, into liposomes, and the choice of immunostimulator should ideally be based on knowledge regarding the specific PRR expression profile of the target APCs. Here, we review state-of-the-art formulation approaches employed for the inclusion of immunostimulators and subunit antigens into liposome dispersion and their optimization towards robust vaccine formulations.

2568 related Products with: Liposome-Based Adjuvants for Subunit Vaccines: Formulation Strategies for Subunit Antigens and Immunostimulators.

succinate-CoA ligase, GDP succinate-CoA ligase, ADP RbcL | Rubisco large subu MarkerGeneTM Fluorescent Cellufine Formyl , 50 ml Cellufine Formyl Media Cellufine Formyl , 500 ml Cellufine Formyl Media Cellufine Formyl Media Formalin Solution (20%) Formalin Solution (20%) Formalin Solution (20%)

Related Pathways

paperclip

#26778208   2016/02/10 Save this To Up

Construction of Mycobacterium tuberculosis ESAT-6 fused to human Fcγ of IgG1: To target FcγR as a delivery system for enhancement of immunogenicity.

In order to prevent spreading of Mycobacterium tuberculosis (Mtb), it is necessary to discover effective vaccines, fast and reliable diagnosis, and appropriate treatment schemes. In the present study, an Fc-tagged recombinant Mtb-ESAT-6 was produced to make a selective delivery system for promoting cellular immunity. To determine 3D structure of the recombinant protein, model building was performed in MODELLER9v13 program. After preparation of Mtb-DNA and Fcγ1 cDNA, they were amplified by specific primers to make ESAT-6 and Fcγ1 products to fuse them in frame using splicing by overlap extension (SOEing)-PCR. After TA cloning, the construct was sequenced to confirm no errors have been introduced. The recombinant DNA was then subcloned into PDR2EF1α eukaryotic expression vector. The plasmid sequenced over the sites at which two DNA fragments were cloned to ensure that the ligation had generated an in-frame fusion of the genes. The CHO cells were then stably transected by PDR2EF1α-ESAT-6:Fcγ1 vector using lipofectamin and the expression and its binding to the Fcγ receptor (FcγRI) on APCs were confirmed by immunofluorescence assay (IFA). The IFA results demonstrated that ESAT6:Fcγ1 was expressed in engineered CHO cells. Semi-scale protein production and purification using HiTrap-PA column showed a high secretion of the recombinant protein by Western blotting method. The molecular weight of the monomer in the SDS-PAGE was equal to a protein of 50kDa, which dimerizes by disulfide bond of Fcγ fragments. Since, ESAT6:Fcγ1 protein dimerizes and bind to FcγRs, therefore, Fc-tagged protein could target APCs for inducing appropriate immune response or using in interferon-based assays.

1433 related Products with: Construction of Mycobacterium tuberculosis ESAT-6 fused to human Fcγ of IgG1: To target FcγR as a delivery system for enhancement of immunogenicity.

Human Dnak (HSP70) His ta Human Antithrombin III to Human Plasminogen Total A Total Human tPA Functiona Total Human uPA Antigen A Human Vitronectin Total A MOUSE ANTI HUMAN CD19 RPE Shiga Toxin 1 antibody, M Shiga Toxin 2 antibody, M Cholera toxin antibody, M Clostridium botulinum D T Clostridum difficile toxi

Related Pathways

paperclip

#26444389   2015/10/08 Save this To Up

In vitro analyses of mitochondrial ATP/phosphate carriers from Arabidopsis thaliana revealed unexpected Ca(2+)-effects.

Adenine nucleotide/phosphate carriers (APCs) from mammals and yeast are commonly known to adapt the mitochondrial adenine nucleotide pool in accordance to cellular demands. They catalyze adenine nucleotide--particularly ATP-Mg--and phosphate exchange and their activity is regulated by calcium. Our current knowledge about corresponding proteins from plants is comparably limited. Recently, the three putative APCs from Arabidopsis thaliana were shown to restore the specific growth phenotype of APC yeast loss-of-function mutants and to interact with calcium via their N-terminal EF--hand motifs in vitro. In this study, we performed biochemical characterization of all three APC isoforms from A. thaliana to gain further insights into their functional properties.

1244 related Products with: In vitro analyses of mitochondrial ATP/phosphate carriers from Arabidopsis thaliana revealed unexpected Ca(2+)-effects.

ATP synthase H+ transport Mitochondrial creatine ki Cultrex In Vitro Angiogen Human integrin aVb3, affi Includes 10 X reaction bu Includes 10 X reaction bu Inhibitory Mouse Monoclon Inhibitory Mouse Monoclon Resorufin Oleate, Fluorog 5-Bromo-6-chloro-3-indoly (BCIP Na) 5 Bromo 4 chlor Transfection Reagents and

Related Pathways

paperclip

#26323510   2015/10/01 Save this To Up

Immunotherapy for Lewis lung carcinoma utilizing dendritic cells infected with CK19 gene recombinant adenoviral vectors.

Dendritic cells (DCs) as 'professional' antigen-presenting cells (APCs) initiate and regulate immune responses to various antigens. DC-based vaccines have become a promising modality in cancer immunotherapy. Cytokeratin 19 (CK19) protein is expressed at high levels in lung cancer and many other tumor cells, suggesting CK19 as a potential tumor‑specific target for cancer immune therapy. We constructed a recombinant adenoviral vector containing the CK19 gene (rAd-CK19). DCs transfected with rAd-CK19 were used to vaccinate C57BL/6 mice bearing xenografts derived from Lewis lung carcinoma (LLC) cells. The transfected DCs gave rise to potent CK19-specific cytotoxic T lymphocytes (CTLs) capable of lysing LLC cells. Mice immunized with the rAd‑CK19-DCs exhibited significantly attenuated tumor growth (including tumor volume and weight) when compared to the tumor growth of mice immunized with rAd-c DCs or DCs during the 24-day observation period (P<0.05). The results revealed that the mice vaccinated with the rAd-CK19-DCs exhibited a potent protective and therapeutic antitumor immunity to LLC cells in the subcutaneous model along with an inhibitive effect on tumor growth compared to the mice vaccinated with the rAd-c DCs or DCs alone. The present study proposes a meaningful mode of action utilizing rAd-CK19 DCs in lung cancer immunotherapy.

2284 related Products with: Immunotherapy for Lewis lung carcinoma utilizing dendritic cells infected with CK19 gene recombinant adenoviral vectors.

Multiple lung carcinoma ( anti HSV (II) gB IgG1 (mo anti HCMV IE pp65 IgG1 (m Bone Morphogenetic Protei anti HCMV gB IgG1 (monocl Growth Differentiation Fa Macrophage Colony Stimula Macrophage Colony Stimula Recombinant HBsAg adr [fr Recombinant HBsAg adr [fr Recombinant HBsAg adr [fr Recombinant Human HGF [fr

Related Pathways

  •  
  • No related Items
paperclip

#26289665   2016/01/07 Save this To Up

Coexpression of human perforin improves yeast-mediated delivery of DNA and mRNA to mammalian antigen-presenting cells.

Previous studies underlined the capacity of recombinant yeast as efficient vehicle for the targeted delivery of functional nucleic acids as well as proteinaceous antigens to mammalian antigen-presenting cells (APCs). To improve this yeast-mediated cargo transport into APCs, we investigated the impact of coexpression of the human membrane-perturbing protein perforin in comparison with bacterial listeriolysin O (LLO) on the yeast-based delivery of DNA, mRNA and proteins to mammalian APCs. In contrast to LLO, a cholesterol-dependent pore-forming toxin of Listeria, intracellular expression of human perforin in Saccharomyces cerevisiae had no impact on yeast cell viability, while its coexpression significantly increased translocation of ovalbumin and subsequent activation of ovalbumin-specific T lymphocytes. Likewise, perforin improved the expression of the model antigen enhanced green fluorescent protein after yeast-mediated DNA and mRNA delivery, whereas LLO was only able to enhance DNA delivery. Taken together, our data show that human perforin, besides bacterial hemolysins, represents a promising means to improve the yeast-mediated delivery of functional nucleic acids and proteins to mammalian APCs.

1048 related Products with: Coexpression of human perforin improves yeast-mediated delivery of DNA and mRNA to mammalian antigen-presenting cells.

AccuPrep Genomic DNA Extr anti CD7 All T cells Reco anti CD38 Hematopoietic p anti CD45 RA B cells, T c anti Transferrin receptor Human Tonsil Microvascula Human Antithrombin III to Human Plasminogen Total A Total Human uPA Antigen A Human Vitronectin Total A Mouse Anti-Human CD34 Tar MarkerGeneTM in vivo lacZ

Related Pathways