Only in Titles

Search results for: anti BCR

paperclip

#38647373   2024/04/22 To Up

Glycan-Reactive Innate-like B Cells and Developmental Checkpoints.

Using an Ig H chain conferring specificity for N-acetyl-d-glucosamine (GlcNAc), we developed transgenic (VHHGAC39 TG) mice to study the role of self-antigens in GlcNAc-reactive B-1 B cell development. In VHHGAC39 TG mice, GlcNAc-reactive B-1 B cell development during ontogeny and in adult bone marrow was normal. However, adult TG mice exhibited a block at transitional-2 immature B cell stages, resulting in impaired allelic exclusion and accumulation of a B cell subset coexpressing endogenous Ig gene rearrangements. Similarly, VHHGAC39 B cell fitness was impeded compared with non-self-reactive VHJ558 B TG cells in competitive mixed bone marrow chimeras. Nonetheless, adult VHHGAC39 mice immunized with Streptococcus pyogenes produce anti-GlcNAc Abs. Peritoneal cavity B cells transferred from VHHGAC39 TG mice into RAG-/- mice also exhibited robust expansion and anti-GlcNAc Ab production. However, chronic treatment of young VHHGAC39 mice with GlcNAc-specific mAbs leads to lower GlcNAc-binding B cell frequencies while increasing the proportion of GlcNAc-binding B1-a cells, suggesting that Ag masking or clearance of GlcNAc Ags impedes maturation of newly formed GlcNAc-reactive B cells. Finally, BCR H chain editing promotes expression of endogenous nontransgenic BCR alleles, allowing potentially self-reactive TG B cells to escape anergy or deletion at the transitional stage of precursor B cell development. Collectively, these observations indicate that GlcNAc-reactive B cell development is sensitive to the access of autologous Ags.
J Stewart New, Brian L P Dizon, John F Kearney, R Glenn King

2006 related Products with: Glycan-Reactive Innate-like B Cells and Developmental Checkpoints.

1mg1.00 flask30ml30ml30ml100ul50ml15ml100ml1.00 flask100ml

Related Pathways

paperclip

#38645147   2024/04/12 To Up

Monoclonal antibodies derived from B cells in subjects with cystic fibrosis reduce burden in mice.