Product info: Gla I | Name | Gla I | 4mC | |------------------------|-------|------| | Cat. # | E493 | E494 | | Package, u.a. | 100 | 500 | | Concentration, u.a./ml | 8000 | 8000 | | Recognition | Pu(5mC)个GPy | | | |---|--|--|--| | site | PyG↓(5mC)Pu | | | | | | | | | Source | Glacial ice bacterium GL29 | | | | Jource | Guardine Sasteria III Gaza | | | | | | | | | The enzyme cleaves only C5-methylated DNA and does not cut unmodi | | | | | | DNA and DNA with N4-methylcytosines. | | | | | The enzyme activity depends on number and position of methylated | | | | | nucleotides in the recognition sequence: | | | | | Optimal substrate (100% activity) | | | | Substrate
specificity | 5`-G(5mC)G(mC)-3`/3`-(5mC)G(5mC)G-5` | | | | | Good substrates (> 25% activity) | | | | | 5`-R(5mC)G(5mC)-3`/3`-YG(5mC)G-5` | | | | | 5`-A(5mC)GT-3`/3`-TG(5mC)A-5` | | | | | Medium substrates (> 6% activity) | | | | | 5`-G(5mC)R(5mC)-3`/3`-(5mC)GYG-5` | | | | | 5`-G(5mC)GT-3`/3`-CG(5mC)A-5` | | | Bad substrates (6% activity) 5'-G(5mC)GC-3'/3'-CG(5mC)G-5' One unit is defined as the amount of enzyme ### Assayed on **DNA pHspAI2/GsaI** is a linearized **plasmid pHspAI2**, which carries a gene of DNA-methyltransferase **M.HspAI_**(recognition sequence 5`-GCGC-3`) and includes a unique GlaI recognition site 5`-G(5mC)G(5mC)-3`/3`-(5mC)G(5mC)G-5`. #### **Unit definition** required to hydrolyze completely a unique 5`-G(5mC)G(5mC)-3`/3`-(5mC)G(5mC)G-5` site in 1 μ g of pHspAl2 plasmid DNA, which is linearized with Gsal, in 1 hour at 30°C in a total reaction volume of 50 μ l. As a result of this site hydrolysis two DNA fragments are produced (see run 3 in the figure). Glal digestion of recognition sequences with three and two 5-methylcytosines results in additional bands appearance (runs 4-6 in the figure). ## Glal activity assay on DNA pHspAl2/Gsal Lanes: 2 – Control DNA pHspAI2/GsaI, 3 – 0.5 µl Gla I (1/10) 4 – 1 µl Gla I (1/10) $5 - 2 \mu l Gla l$ (1/10) 6 – 1 μl of undiluted Glal 1 and 7 – 1 Kb SE DNAmarkers. Products were separated in | 1% agarose gel
in Buffer TAE. | | |-------------------------------------|---| | Reaction
buffer | SE-buffer Glal, (10 mM Tris-HCl (pH 8,5 at 25°C); 5 mM MgCl ₂ ; 10 mM NaCl; 1 mM 2-mercaptoethanol.) | | Optimal temperature | 30°C | | Storage conditions | 10 mM Tris-HCl (pH 7.5); 200 mM NaCl; 0.1 mM EDTA; 7 mM 2-mercaptoethanol; 0,05% Triton X-100, 0.1 mg/ml BSA, 50% glycerol; Store at -20°C. | | Non-specific
hydrolisis | No detectable degradation of 1µg of Lambda DNA was observed after incubation with 8 units of enzyme for 16 hours at 30°C in a total reaction volume of 50 μ l. | | Reagents
Supplied with
Enzyme | 10 X SE-buffer Glal, pHspAl2/Gsal DNA | | Methylation sensitivity | The enzyme cleaves only C5-methylated DNA and does not cut unmodified DNA and DNA with N4-methylcytosines . | | Inactivation 20 minutes under | 65°C | | References: | Chernukhin V.A., Nayakshina T.N., Tomilova J.E., Mezentseva N.V., Dedkov V.S., Degtyarev S.Kh. Bacterial strain Glacial ice bacterium I - producer of Glal restriction endonuclease. // Russian Federation patent RU 2287012 C1 (2006). Valery A. Chernukhin, Tatyana N. Najakshina, Murat A. Abdurashitov, Julia E. Tomilova, Nina V. Mezentzeva, Vladimir S. Dedkov, Natalya A. Mikhnenkova, Danila A. Gonchar, Sergei Kh. Degtyarev A novel | restriction endonuclease Glal recognizes methylated sequence 5'-G(m5C)^GC-3' // Biotechnologia (russ.). 2006. N 4. P. 31-35 - 3. Tomilova J.E., Chernukhin V.A., Degtyarev S.Kh. Dependence of site-specific endonuclease Glal activity on quantity and location of methylcytosines in the recognition sequence 5'-GCGC-3'. // "Ovchinnikov bulletin of biotechnology and physical and chemical biology" V.2, No 1, pp 30-39 (2006) (Russian) - 4. G. V. Tarasova, T. N. Nayakshina, S. Kh. Degtyarev Substrate specificity of new methyl-directed DNA endonuclease Glal // BMC Molecular Biology 2008, 9:7 #### Application: Chernukhin V.A, Abdurashitov M.A., Tomilov V.N., Gonchar D.A., Degtyarev S.Kh. Comparative analysis of mouse chromosomal DNA digestion with restriction endonucleases in vitro and in silico // "Ovchinnikov bulletin of biotechnology and physical and chemical biology" V.3, No 4, pp 19-27, 2007 Abdurashitov M.A., Chernukhin V.A, Gonchar D.A., Degtyarev S.Kh. Glal digestion of mouse γ-satellite DNA: study of primary structure and ACGT sites methylation // BMC Genomics 2009, 10:322. D. A. Gonchar, A. G. Akishev, S. Kh. Degtyarev BlsI- and GlaI-PCR assays – a new method of DNA methylation study // "Ovchinnikov bulletin of biotechnology and physical and chemical biology" V.6, No 1, pp 5-12, 2010 Wood, R. J., McKelvie, J. C., Maynard-Smith, M. D., and Roach, P. L. A realtime assay for CpG-specific cytosine-C5 methyltransferase activity.// (2010) Nucleic Acids Res 38, e107 Kravets AP, Mousseau TA, Litvinchuk AV, Ostermiller Sh, Vengen GS, Grodzinski DM. Changes in wheat DNA methylation pattern after chronic seed gamma-irradiation.// Tsitol Genet. 2010 Sep-Oct;44(5):18-22. Russian. Alexander G. Akishev, Danila A. Gonchar, Murat A. Abdurashitov and Sergey Kh. Degtyarev Epigenetic typing of human cancer cell lines by Blsland Glal-PCR assays // "Ovchinnikov bulletin of biotechnology and physical and chemical biology" V.7, No 3, pp 5-16, 2011 F. Syeda, R.L. Fagan, M. Wean, G.V. Awakumov, J.R. Walker, S. Xue, S. Dhe-Paganon, & C. Brenner, "The RFTS Domain is a DNA-competitive Inhibitor of Dnmt1"//, JBC, v. 286, pp. 15344-15351 (2011). Keith N. Rand, Graeme P. Young, Thu Ho and Peter L. Molloy, "Sensitive and selective amplification of methylated DNA sequences using helper-dependent chain reaction in combination with a methylationdependent restriction enzymes."//, Nucleic Acids Research, pp. 1-10 (2012).