RayBio® Human MIG ELISA Kit

User Manual (Revised Mar 1, 2012)

RayBio[®] Human MIG ELISA Kit Protocol

(Cat#: ELH-MIG-001)

We Provide You With Excellent Protein Array System And Service

Tel:(Toll Free)1-888-494-8555 or 770-729-2992; Fax:770-206-2393;

web: www.raybiotech.com Email: info@raybiotech.com

RayBio® Human MIG ELISA Kit Protocol

TABLE OF CONTENTS

I.	Introduction
II.	Reagents2
III.	Storage3
IV.	Additional Materials Required3
V.	Reagent Preparation4
VI.	Assay Procedure6
VII.	Assay Procedure Summary7
VIII.	Calculation of Results
A.	Typical Data8
B.	Sensitivity8
C.	Recovery8
D.	Linearity9
E.	Reproducibility9
IX.	Specificity9
X.	References10
XI.	Troubleshooting Guide11

I. INTRODUCTION

MIG (monokine induced by gamma-interferon) also called MIG-1. Human MIG has a length of 103 amino acids (11.7 kDa). The protein belongs to the family of chemotactic cytokines known as Chemokines (CXC-chemokines). The human MIG gene has been localized to chromosome 4q21 in the immediate vicinity (less than 16 kb) of the gene encoding IP-10. MIG is highly expressed in the papillae of psoriatic lesions and may play an important role as a mediator of T-cell recruitment and activation in psoriasis.

The RayBio® Human MIG ELISA (Enzyme-Linked Immunosorbent Assay) kit is an in vitro enzyme-linked immunosorbent assay for the quantitative measurement of human MIG in serum, plasma, cell culture supernatants and urine. This assay employs an antibody specific for human MIG coated on a 96-well plate. Standards and samples are pipetted into the wells and MIG present in a sample is bound to the wells by the immobilized antibody. The wells are washed and biotinylated anti-human MIG antibody is added. After washing away unbound biotinylated antibody, HRP-conjugated streptavidin is pipetted to the wells. The wells are again washed, a TMB substrate solution is added to the wells and color develops in proportion to the amount of MIG bound. The Stop Solution changes the color from blue to yellow, and the intensity of the color is measured at 450 nm.

II. REAGENTS

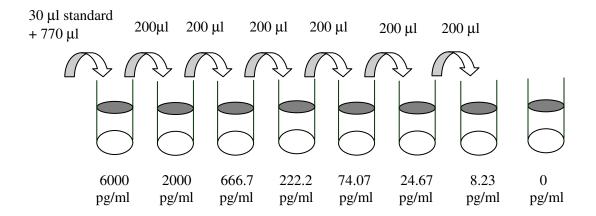
- 1. MIG Microplate (Item A): 96 wells (12 strips x 8 wells) coated with anti-human MIG.
- 2. Wash Buffer Concentrate (20x) (Item B): 25 ml of 20x concentrated solution.
- 3. Standards (Item C): 2 vials, recombinant human MIG.
- 4. Assay Diluent A (Item D): 30 ml of animal serum with 0.09% sodium azide as preservative. For Standard/Sample (serum/plasma) diluent.

- 5. Assay Diluent B (Item E): 15 ml of 5x concentrated buffer. For Standard/Sample (cell culture medium/urine) diluent.
- 6. Detection Antibody MIG (Item F): 2 vial of biotinylated anti-human MIG (each vial is enough to assay half microplate).
- 7. HRP-Streptavidin Concentrate (Item G): 200 µl of 400x concentrated HRP-conjugated streptavidin.
- 8. TMB One-Step Substrate Reagent (Item H): 12 ml of 3,3',5,5'-tetramethylbenzidine (TMB) in buffered solution.
- 9. Stop Solution (Item I): 8 ml of 0.2 M sulfuric acid.

III. STORAGE

May be stored for up to 6 months at 2° to 8°C from the date of shipment. Standard (recombinant protein) should be stored at -20°C or -80 °C (recommended at -80°C) after reconstitution. Opened Microplate Wells or reagents may be store for up to 1 month at 2° to 8°C. Return unused wells to the pouch containing desiccant pack, reseal along entire edge. Note: the kit can be used within one year if the whole kit is stored at -20°C. Avoid repeated freeze-thaw cycles.

IV. ADDITIONAL MATERIALS REQUIRED


- 1 Microplate reader capable of measuring absorbance at 450 nm.
- 2 Precision pipettes to deliver 2 µl to 1 ml volumes.
- 3 Adjustable 1-25 ml pipettes for reagent preparation.
- 4 100 ml and 1 liter graduated cylinders.
- 5 Absorbent paper.
- 6 Distilled or deionized water.
- 7 Log-log graph paper or computer and software for ELISA data analysis.
- 8 Tubes to prepare standard or sample dilutions.

V. REAGENT PREPARATION

- 1. Bring all reagents and samples to room temperature (18 25°C) before use.
- 2. Sample dilution: If your samples need to be diluted, Assay Diluent A (Item D) should be used for dilution of serum/plasma samples. 1x Assay Diluent B (Item E) should be used for dilution of culture supernatants and urine.

Suggested dilution for normal serum/plasma: 2-10 fold*.

- * Please note that levels of the target protein may vary between different specimens. Optimal dilution factors for each sample must be determined by the investigator.
- 3. Assay Diluent B should be diluted 5-fold with deionized or distilled water.
- 4. Preparation of standard: **Briefly spin the vial of Item C** and then add 400 μl Assay Diluent A (for serum/plasma samples) or 1x Assay Diluent B (for cell culture medium and urine) into Item C vial to prepare a 160 ng/ml standard. **Dissolve the powder thoroughly by a gentle mix.** Add 30 μl MIG standard from the vial of Item C, into a tube with 770 μl Assay Diluent A or 1x Assay Diluent B to prepare a 6000 pg/ml stock standard solution. Pipette 400 μl Assay Diluent A or 1x Assay Diluent B into each tube. Use the stock standard solution to produce a dilution series (shown below). Mix each tube thoroughly before the next transfer. Assay Diluent A or 1x Assay Diluent B serves as the zero standard (0 pg/ml).

- 5. If the Wash Concentrate (20x) (Item B) contains visible crystals, warm to room temperature and mix gently until dissolved. Dilute 20 ml of Wash Buffer Concentrate into deionized or distilled water to yield 400 ml of 1x Wash Buffer.
- 6. Briefly spin the Detection Antibody vial (Item F) before use. Add 100 μl of 1x Assay Diluent B into the vial to prepare a detection antibody concentrate. Pipette up and down to mix gently (the concentrate can be stored at 4°C for 5 days). The detection antibody concentrate should be diluted 65-fold with 1x Assay Diluent B and used in step 4 of Part VI Assay Procedure.
- 7. Briefly spin the HRP-Streptavidin concentrate vial (Item G) and pipette up and down to mix gently before use. HRP-Streptavidin concentrate should be diluted 400-fold with 1x Assay Diluent B before use.

For example: Briefly spin the vial (Item G) and pipette up and down to mix gently. Add 30 μ l of HRP-Streptavidin concentrate into a tube with 12 ml 1x Assay Diluent B to prepare a final 400 fold diluted HRP-Streptavidin solution (don't store the diluted solution for next day use). Mix well.

VI. ASSAY PROCEDURE:

- 1. Bring all reagents and samples to room temperature (18 25°C) before use. It is recommended that all standards and samples be run at least in duplicate.
- 2. Add 100 µl of each standard (see Reagent Preparation step 2) and sample into appropriate wells. Cover well and incubate for 2.5 hours at room temperature or over night at 4°C with gentle shaking.
- 3. Discard the solution and wash 4 times with 1x Wash Solution. Wash by filling each well with Wash Buffer (300 µl) using a multi-channel Pipette or autowasher. Complete removal of liquid at each step is essential to good performance. After the last wash, remove any remaining Wash Buffer by aspirating or decanting. Invert the plate and blot it against clean paper towels.
- 4. Add 100 µl of 1x prepared biotinylated antibody (Reagent Preparation step 6) to each well. Incubate for 1 hour at room temperature with gentle shaking.
- 5. Discard the solution. Repeat the wash as in step 3.
- 6. Add 100 μl of prepared Streptavidin solution (see Reagent Preparation step 7) to each well. Incubate for 45 minutes at room temperature with gentle shaking.
- 7. Discard the solution. Repeat the wash as in step 3.
- 8. Add 100 µl of TMB One-Step Substrate Reagent (Item H) to each well. Incubate for 30 minutes at room temperature in the dark with gentle shaking.
- 9. Add 50 µl of Stop Solution (Item I) to each well. Read at 450 nm immediately.

VII. ASSAY PROCEDURE SUMMARY

1. Prepare all reagents, samples and standards as instructed.

 \prod

2. Add 100 µl standard or sample to each well. Incubate 2.5 hours at room temperature or over night at 4°C.

Ŋ

3. Add 100 µl prepared biotin antibody to each well. Incubate 1 hour at room temperature.

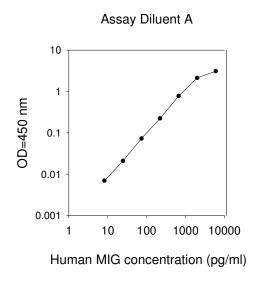
 \prod

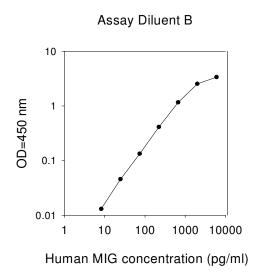
4. Add 100 μl prepared Streptavidin solution. Incubate 45 minutes at room temperature.

 \iint

5. Add 100 µl TMB One-Step Substrate Reagent to each well. Incubate 30 minutes at room temperature.

 \prod


6. Add 50 μl Stop Solution to each well. Read at 450 nm immediately.


VIII. CALCULATION OF RESULTS

Calculate the mean absorbance for each set of duplicate standards, controls and samples, and subtract the average zero standard optical density. Plot the standard curve on log-log graph paper or using Sigma plot software, with standard concentration on the x-axis and absorbance on the y-axis. Draw the best-fit straight line through the standard points.

A. TYPICAL DATA

These standard curves are for demonstration only. A standard curve must be run with each assay.

B. SENSITIVITY

The minimum detectable dose of MIG is typically less than 20 pg/ml.

C. RECOVERY

Recovery was determined by spiking various levels of human MIG into human serum, plasma and cell culture media. Mean recoveries are as follows:

Sample Type	Average % Recovery	Range (%)
Serum	94.56	82-102
Plasma	96.32	84-103
Cell culture media	101.3	89-108

D. LINEARITY

Sample Type		Serum	Plasma	Cell Culture Media
1:2	Average % of Expected Range (%)	94 83-103	93 82-102	97 85-104
1:4	Average % of Expected Range (%)	96 84-104	97 85-104	102 89-108

E. REPRODUCIBILITY

Intra-Assay: CV<10% Inter-Assay: CV<12%

IX. SPECIFICITY

Cross Reactivity: This ELISA kit shows no cross-reactivity with any of the cytokines tested (*e.g.*, human Angiogenin, BDNF, BLC, ENA-78, FGF-4, IL-1α, IL-1β, IL-2, IL-3, IL-4, IL-5, IL-7, IL-8, IL-9, IL-10, IL-11, IL-12 p70, IL-12 p40, IL-13, IL-15, IL-309, IP-10, G-CSF, GM-CSF, IFN-γ, Leptin, MCP-1, MCP-2, MCP-3, MDC, MIP-1α, MIP-1 β, MIP-1δ, PARC, PDGF, RANTES, SCF, TARC, TGF-β, TIMP-1, TIMP-2, TNF-α, TNF-β, TPO, VEGF).

X. REFERENCES:

- 1. Liao F et al. Human mig chemokine: biochemical and functional characterization. Journal of Experimental Medicine 182(5): 1301-14 (1995).
- 2. Farber JM mig and IP-10: CXC chemokines that target lymphocytes. Journal of Leukocyte Biology 61(3): 246-57 (1997).
- 3. Goebeler M et al The C-X-C chemokine Mig is highly expressed in the papillae of psoriatic lesions Journal of Pathology 184(1): 89-95 (1998).

XI. TROUBLESHOOTING GUIDE

Problem	Cause	Solution
Poor standard curve	1. Inaccurate pipetting	1. Check pipettes
	2. Improper standard dilution	 Ensure a brief spin of Item C and dissolve the powder thoroughly by a gentle mix.
2. Low signal	1.Too brief incubation times	Ensure sufficient incubation time; assay procedure step 2 may change to over night
	Inadequate reagent volumes or improper dilution	Check pipettes and ensure correct preparation
3. Large CV	1. Inaccurate pipetting	 Check pipettes
4. High background	Plate is insufficiently washed	 Review the manual for proper wash. If using a plate washer, check that all ports are unobstructed.
	Contaminated wash buffer	Make fresh wash buffer
5. Low sensitivity	1. Improper storage of the ELISA kit	1. Store your standard at<-20°C after reconstitution, others at 4 °C. Keep substrate solution protected from light
	2. Stop solution	2. Stop solution should be added to each well before measure

RayBio® ELISA kits:

Over 200 ELISA kits, custom ELISA kit choose from over 500 list visit www.raybiotech.com for details.

This product is for research use only.

©2004 RayBiotech, Inc.