Anti-Cytochrome C (14G6)

Background : Cytochrome c is a small heme protein consisting electron-transport chain in mitochondria and transfers electrons between complex III and IV. It is highly conserved through diverse species from unicellular microorganisms to animals and plants.
Cytochrome c is also an intermediate in apoptosis. Currently, it is widely accepted that mitochondria play a key role in the regulation of apoptosis. In mammalian cells, a major caspase activation pathway is the cytochrome c-initiated pathway. In this pathway, a variety of apoptotic stimuli cause cytochrome c release from mitochondria. In the cytosol, cytochrome c interacts with its adaptor molecule, Apaf-1, resulting in the recruitment, processing and activation of pro-caspase-9 in the presence of dATP or ATP. Caspase-9, in turn, cleaves and activates pro-caspase-3 and -7; these effector caspases are responsible for the cleavage of various proteins leading to biochemical and morphological features characteristic of apoptosis.
Immunogen : His-tagged recombinant human Cytochrome C protein purified from E.coli

Host : Mouse
Clone number : 14G6
Isotype : IgG1, k
Size : $100 \mu \ell$
Compositon : Hepes with 0.15 M NaCl , 0.01% BSA, 0.03% sodium azide, and 50% glycerol

Positive control : HeLa cell lysate

Storage : Store for 1 year at $-20^{\circ} \mathrm{C}$ from date of shipment.

Species cross reactivity

Immunoblot Analysis of cell lysates
Lane 1 : HeLa cell lysate
Lane $2: 293 \mathrm{~T}$ cell lysate
Lane 3 : C6 cell lysate
Lane 4 : NIH 3T3 cell lysate

Applications:

Western Blotting(1: 2,000)

Background Reference :

1) Gogvadze, V. et al., 2006, Biochim Biophys Acta. 1757:639-647
2) Jiang X. and Wang X., 2004, Ann Rev Biochem. 73:87-106
3) Robertson, J.D. et al., 2000, J. Struct. Biol. 129 :346358

FOR RESEARCH PURPOSE ONLY
NOT FOR DIAGNOSTIC OR THERAPEUTIC USE

