
POLYCLONAL ANTIBODY

Anti-Peroxiredoxin-SO₃

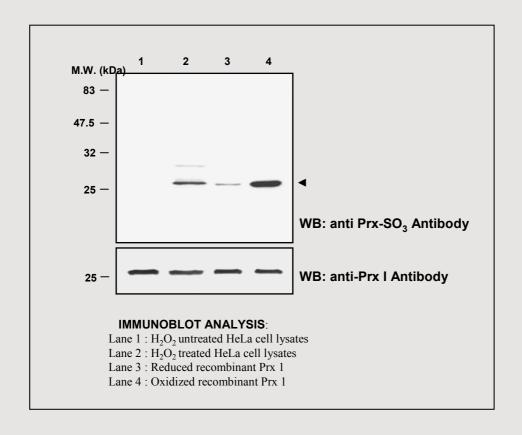
Background: Peroxiredoxin(Prx) is an antioxidant enzyme detoxifying reactive oxygen species and has a cysteine at their active site. Prx enzymes modulate various receptor signaling pathways and protect cells from oxidatively induced death. Prx I to IV have two conserved Cys residues corresponding to Cys⁵¹ and Cys¹⁷² of mammalian Prx I. The active site cysteine(Cys⁵¹) is oxidized to cysteine sulfenic acid(Cys51-SOH) when a peroxide is reduced. Because Cys51-SOH is unstable, it forms a disulfide with Cys172-SH which comes from other subunit of homodimer. The disulfide is then reduced back to the Prx active thiol form by the thioredoxin-thioredoxin reductase system. However, the formation of the disulfide is a slow process. Thus under oxidative stress condition, the sulfenic intermediate(Cys51-SOH) can be easily overoxidized to cysteine sulfinic acid(Cys-SO₂H) or cysteine sulfonic acid(Cys-SO₃H) before it is able to form a disulfide. Recent studies suggest that overoxidized Prx can be reduced back to the active form during recovery after Anti-Prx-SO₃ antibody oxidative stress. recognizes both sulfinic and sulfonic forms of Prx and detects overoxidized Prx enzymes in H₂O₂-treated cells with high sensitivity and specificity.

Immunogen: Sulfonylated peptide(KLH coupled) corresponding to the active site sequence common to Human Prx I to IV

Species cross reactivity		
Human	Mouse	Rat
+	+	+

Host: Rabbit

Composition: PBS coataning 50% glycerol


Specificity: Sulfinic and sulfonic form of Prx I

to IV

Size: 100ul

Storage : Store for 1 year at -20 $^{\circ}$ C from date of

shipment

Applications:

Western blotting (1:2,000)

Background Reference:

- (1) Woo H.A., et al. (2003) J. Biol. Chem. 278(48):47361-47364
- (2) Woo H.A., et al. (2003) Science, 300:653-656
- (3) Chevallet M., et al. (2003) J. Biol. Chem. 278(39): 37146-37153
- (4) Angelika Tolle, et al.(2005) Free Radic Biol Med. 38:1401-1408
- (5) James W. Baty, et al.(2005) Biochem. J 3 Mar Published
- (6) Min Hee Choi et al. (2005) Nature letters 435(19): 347-353

FOR RESEARCH PURPOSE ONLY NOT FOR DIAGNOSTIC OR THERAPEUTIC USE