SensiMix[™] SYBR No-ROX Kit Shipping: On Dry/Blue Ice Catalog Numbers Exp. Date: See vial QT650-02: 250 x 50 μ l reactions: 5 x 1.25ml Batch No.: See vial QT650-05: 500 x 50 μ l reactions: 10 x 1.25ml Concentration: see vial QT650-20: 2000 x 50 μ l reactions: 40 x 1.25ml Store at -20°C #### Storage and Stability: The SensiMixTMSYBR No-ROX Kit is shipped on Dry/Blue Ice. All kit components should be stored at -20°C upon receipt. Excessive freeze/thawing is not recommended. Since SYBR® Green I is light-sensitive, it is important to avoid prolonged exposure to light. When stored under optimum conditions, the reagents are stable for a minimum of 6 months from date of purchase. #### Quality Control: Bioline operates under ISO 9001 Management System. The SensiMix SYBR No-ROX Kit and its components are extensively tested for activity, processivity, efficiency, heat activation, sensitivity, absence of nuclease contamination and absence of nucleic acid contamination prior to release. #### Safety Precautions: Harmful if swallowed. Irritating to eyes, respiratory system and skin. Please refer to the material safety data sheet for further information. DATA SHEET # Description The SensiMixTM SYBR No-ROX Kit is a high-performance reagent designed for superior sensitivity and specificity on various real-time instruments, in which a passive reference signal is not required. The SensiMix SYBR No-ROX Kit employs a hot-start DNA polymerase, for high PCR specificity and sensitivity. SensiMix is inactivated and possesses no polymerase activity during the reaction set-up, preventing non-specific amplification including primer-dimer formation. For ease-of-use and added convenience, SensiMix SYBR No-ROX is provided as a 2x mastermix containing all the components necessary for real-time PCR, including the SYBR® Green I dye, dNTPs, stabilisers and enhancers. As a ready-to-use premix, only primers and template need to be added. ## Kit components | Reagent | 250 x 50μl | 500 x 50μl | 2000 x 50μl | | |------------------------|------------|-------------|-------------|--| | | Reactions | Reactions | Reactions | | | SensiMix™ SYBR | 5 x 1.25ml | 10 x 1.25ml | 40 x 1.25ml | | | No-ROX (2x) | (6.25ml) | (12.5ml) | (50ml) | | | 50mM MgCl ₂ | 1 x 1ml | 1 x 1ml | 4 x 1ml | | # Kit compatibility The SensiMix SYBR No-ROX Kit contains premixed SYBR Green I dye for compatibility with real-time instruments that do not need a passive reference signal for normalization of the data. The SensiMix SYBR No-ROX Kit is optimized for use on the real-time instruments listed in the following compatibility table. | Manufacturer | Model | |--------------|--| | Bio-Rad | Opticon™, Opticon2™, MiniOpticon,
Chromo4™, CFX96, CFX384 | | Cepheid | SmartCycler™ | | Qiagen | Rotor-Gene™ 3000 & 6000 | | Eppendorf | Mastercycler ep Realplex, ep Reaplex 2S | | Roche | LightCycler [®] 480 | | Techne | Quantica [®] | | Illumina | Eco™ | | Takara | Thermal Cycler Dice [®] TP800 | ### General considerations To help prevent any carry-over DNA contamination we recommend that separate areas be maintained for PCR set-up, PCR amplification and any post-PCR gel analysis. It is essential that any amplified PCR product should not be opened in the PCR set-up area. **Primers:** the sequence and concentration of primer as well as the amplicon length can be critical for specific amplification, yield and overall efficiency of any real-time PCR. We strongly recommend taking the following into consideration when designing and running your PCR reaction: - use primer-design software, such as Primer3 or visual OMPTM (http://frodo.wi.mit.edu/primer3/ and DNA Software, Inc; http://dnasoftware.com/ respectively). Primers should have a melting temperature (Tm) of approximately 60°C - optimal amplicon length should be 50-150bp - a final primer concentration of 250nM is suitable for most PCR conditions, however to determine the optimal concentration we recommend a primer titration in the range of 0.1–1μM - use equimolar primer concentrations - when amplifying from cDNA use gene-specific primers. If possible use intron-spanning primers to avoid amplification from genomic DNA **Template:** it is important that the DNA template is suitable for use in PCR in terms of purity and concentration. Also, the template needs to be devoid of any contaminating PCR inhibitors (e.g. EDTA). The recommended amount of template for PCR is dependent upon the type of DNA used. The following should be considered when using genomic DNA and cDNA templates: - Genomic DNA: use up to 1μg of complex (e.g. eukaryotic) genomic DNA in a single PCR. We recommend using the Bioline ISOLATE Genomic DNA Mini Kit (BIO-53021) for high yield and purity from both prokaryotic and eukaryotic sources - cDNA: the optimal amount of cDNA to use in a single PCR is dependent upon the copy number of the target gene. We suggest using 100ng cDNA per reaction, however it may be necessary to vary this amount. To perform a two-step RT-PCR, we recommend using the Tetro cDNA Synthesis Kit (BIO-65042) for reverse transcription of the purified RNA. For high yield and purity of RNA, use the Bioline ISOLATE RNA Mini Kit (BIO-54042) **MgCl₂:** The MgCl₂ concentration in the 1x reaction mix is 3mM, which is optimal for SensiMix in the majority of real-time PCR conditions. If necessary, we suggest titrating MgCl₂ to a maximum of 5mM. **PCR Controls:** It is important to detect contamination by DNA that may affect the reliability of the data. Always include a notemplate control (NTC), replacing the template with PCR-grade water. When performing a two-step RT-PCR, set-up a no-RT control as the NTC for the PCR. ### **Procedure** **Reaction mix composition:** Prepare a PCR master mix. The volumes given below are based on a standard 50μ l final reaction mix and can be scaled accordingly. | Reagent | Volume | Final concentration | |---------------------------------------|-------------------|---------------------| | 2x SensiMix™ SYBR [®] No-ROX | 25µl | 1x | | 25μM Forward Primer | 0.5μΙ | 250nM | | 25μM Reverse Primer | 0.5μΙ | 250nM | | H ₂ 0 | Up to 45µl | - | | Template | 5µl | | | | 50μl Final volume | | # Suggested thermal cycling conditions The PCR conditions described below are suitable for SensiMix SYBR No-ROX Kit for the majority of amplicons and real-time PCR instruments. However, the cycling conditions can be varied to suit customer or machine-specific protocols. The critical step of the PCR is the 10 minute initial activation at 95°C. The detection channel on the real-time instrument should be set to (SYBR) Green or FAM. | Cycles | Temperature | Time | Notes | |--------|-------------|--------|------------------------------------| | 1 | *95°C | *10min | Polymerase activation | | | 95°C | 15s | | | 40 | 55-60°C | 15s | Temp. depends on the Tm of primers | | | 72°C | 15s | Acquire at end of step | ^{*}Non-variable parameter ### Optional analysis: After the reaction has reached completion refer to the instrument instructions for the option of melt-profile analysis. # **Troubleshooting Guide** | Problem | Possible Cause | Recommendation | | |---------------------------|---|--|--| | | Activation time too short | Make sure SensiMix is activated for 10min at 95°C before cycling | | | | Error in protocol setup | Verify that correct reagent concentrations, volumes, dilutions and storage conditions have been used | | | | Suboptimal primer design | Use primer design software or validated primers. Test primers on a control template | | | No amplification trace | Incorrect concentration of primers | Use primer concentration between 100nM and 1μM | | | AND | Template degraded | Re-isolate your template from the sample material or use freshly prepared template dilution | | | No product on agarose gel | Primers degraded | Use newly synthesized primers | | | agaiose gei | Template contaminated with PCR inhibitors | Further dilute template before PCR or purify template and resuspend it in PCR-grade H ₂ O | | | | Template concentration too low | Increase concentration used | | | | Cycling conditions not optimal | Increase extension/annealing times, increase cycle number, reduce annealing temperature | | | No amplification trace | | | | | AND | Error in instrument setup | Check that the acquisition settings are correct during cycling | | | Product on agarose gel | | | | # **Troubleshooting Guide (Continued)** | Problem | Possible Cause | Recommendation | | |-----------------------------|---|--|--| | | Suboptimal primer design | Redesign primers using appropriate software or use validated primers | | | Non-specific amplification | Primer concentration too high | Test dilution series of primer concentrations until primer dimer/non-specific amplification products disappear | | | | Primer concentration too low | Titrate primers in the concentration range of 100nM - 1μM | | | product
AND | Primer annealing temperature too low | Increase PCR annealing temperature in increments of 2°C until primer dimer/non-specific amplification products disappear | | | Primer-dimers | Template concentration too low | Increase template concentration | | | | Template concentration too high | Reduce template concentration until non-specific products disappear | | | | Extension time too long | Reduce extension time to determine whether non-specific products are reduced | | | | Activation time too short | Ensure the reaction is activated for 10min at 95°C before cycling | | | | Annealing temperature too high | Decrease annealing temperature in steps of 2°C | | | | Extension time too short | Double extension time to determine whether the cycle threshold (C_T) is affected | | | Late amplification | Template concentration too low | Increase concentration if possible | | | trace | Template with high secondary structure | Increase reverse transcription reaction time up to 30min Increase reverse transcription reaction temperature up to 45°C | | | | Template is degraded | Re-isolate template from sample material or use freshly prepared template dilution | | | | Suboptimal design of primers | Redesign primers using appropriate software or use validated primers | | | | Primer concentration too low | Increase concentration of primer in 100nM increments | | | | Extension time is too short | Increase extension time | | | PCR efficiency
below 90% | Primer concentration too low | Increase concentration of primer in 100nM increments | | | | Suboptimal design of primers | Redesign primers using appropriate software or use validated primers | | | PCR efficiency | Template is degraded or contains PCR inhibitors | Re-isolate template from sample material or use freshly prepared template dilution or purify template and resuspend it in $\rm H_2O$ | | | above 110% | Non specific amplification and/or primer dimers | Use melt analysis and 4% agarose gel electrophoresis to confirm presence of non-specific amplification products. See above for preventing/removing non-specific products | | ## **Associated Products** | Product | Description | Pack Size | Cat No. | |------------------------------|--|-----------------------------------|-------------------------------------| | ISOLATE Genomic DNA Mini kit | Rapid isolation of DNA from a variety of samples | 10 Preps
50 Preps
250 Preps | BIO-52031
BIO-52032
BIO-52033 | | ISOLATE Plant DNA Mini kit | Rapid isolation of DNA from a variety of plant samples | 10 Preps
50 Preps
250 Preps | BIO-52034
BIO-52035
BIO-52036 | | ISOLATE RNA Mini Kit | Fast and efficient isolation of extremely pure total RNA from a variety of samples | 10 Preps
50 Preps
250 Preps | BIO-52039
BIO-52040
BIO-52041 | | ISOLATE Plant RNA Mini Kit | Fast and efficient isolation of extremely pure total RNA from a variety of plant samples | 10 Preps
50 Preps
250 Preps | BIO-52042
BIO-52043
BIO-52044 | | TRIsure™ | Quick isolation of high-quality RNA from a variety of sources for subsequent use in cDNA synthesis | 100ml
200ml | BIO-38032
BIO-38033 | | Tetro cDNA Synthesis Kit | Fully optimized to generate maximum yields of full-length cDNA from RNA | 30 Reactions
100 Reactions | BIO-65042
BIO-65043 | | Agarose | Molecular biology grade agarose | 100g
500g | BIO-41026
BIO-41025 | | PCR Water | Ultra-pure (18.2M Ω) molecular biology grade water | 10 x 10ml | BIO-37080 | | DEPC-treated Water | Deionized, high-quality molecular grade water treated with DEPC. Ideal for use in all RNA work | 10 x 10ml
1 Liter | BIO-38030
BIO-38031 | ## TRADEMARK AND LICENSING INFORMATION - 1).Trademarks: SensiMixTM (Bioline Reagents Ltd), SYBR[®] (Molecular Probes), ROXTM, iCyclerTM MyiQ5TM, OpticonTM, Chromo4TM, MiniopticonTM, (Bio-Rad), LightCycler[®] (Roche), StepOneTM (ABI), SmartCyclerTM (CEPheid), RotorGeneTM (Corbett), RealPlexTM (Eppendorf), QuanticaTM (Techne), MX4000 (Stratagene). - 2). Purchase of this product includes limited right to use the supplied amount of SYBR® Green I Stain patented by Molecular Probes, Inc. - 3) Notice to Purchaser: Limited License. Use of this product may be covered by one or more of the following US patents: 6,127,155, 5,677,152 (claims 1 to 23 only), 5,773,258 (claims 1 and 6 only). The purchase of this product includes a limited, non-transferable immunity from suit under the foregoing patent claims for using only this amount of product for the purchaser's own internal research. No right to perform commercial services of any kind, including without limitation reporting the results of purchaser's activities for a fee or other commercial consideration, is conveyed expressly, by implication, or by estoppel. This product is for research use only. Diagnostic uses under Roche patents require a separate license from Roche. Further information on purchasing licenses may be obtained by contacting the Director of Licensing, Applied Biosystems, 850 Lincoln Centre Drive, Foster City, California 94404, USA. - 4) SensiMix products are manufactured by Bioline Reagents Ltd. - 5) Notice to Purchaser: No rights are conveyed with respect to US patent 5,928,907 Gentaur Molecular Products Voortstraat 49 1910 Kampenhout, Belgium