Only in Titles

Search results for: p53 Mutant Temperature Sensitive

paperclip

#28440416   2017/04/20 To Up

FUCA1 is induced by wild-type p53 and expressed at different levels in thyroid cancers depending on p53 status.

Fucose residues of cell surface glycans, which play important roles in growth, invasion and metastasis, are added by fucosyltransferases (FUTs) and removed by α-L-fucosidases (FUCAs). By the differential display method, we isolated a 3' non-coding region of α-L-fucosidase-1 (FUCA1) (a gene coding for the lysosomal fucosidase-1 enzyme) as a wild-type p53-inducible gene: 18S and 20S FUCA1 mRNA species were induced in Saos-2 cells transfected with a temperature-sensitive p53 mutant at the permissive temperature. By microarray analyses of thyroid cancer biopsy samples, FUCA1 RNA expression levels were found to be lower in anaplastic thyroid cancer samples (ATCs), while they were higher in papillary thyroid cancer samples (PTCs) and in normal thyroid tissues. Since most ATCs were reported to carry the mutated form of p53, while PTCs carry mostly the wild-type form of p53, it is likely that FUCA1 expression levels are regulated, at least in part, by the p53 status in thyroid cancers. In order to better understand the role played by FUCA genes in thyroid tumorigenesis, we examined the clonogenic potential in vitro of thyroid cell lines transfected with either FUCA1 or FUCA2 (the latter gene coding for a secreted, non-lysosomal enzyme). We found that α-L-fucosidases did not suppress grossly cell growth. Contrary to what we observed with the expression of FUCA1, the FUT8 expression levels were found high in ATCs but lower in PTCs and normal thyroid tissues. Taken together, these results suggest the possibility that the higher fucose levels on cell surface glycans of aggressive ATCs, compared to those of less aggressive PTCs, may be at least in part responsible for the more aggressive and metastatic phenotype of ATCs compared to PTCs, as the expression levels of FUCA1 and FUT8 were inversely related in these two types of cancers.
Nobuo Tsuchida, Masa-Aki Ikeda, Υoshizumu Ιshino, Michele Grieco, Giancarlo Vecchio

1221 related Products with: FUCA1 is induced by wild-type p53 and expressed at different levels in thyroid cancers depending on p53 status.

100 ul100 ul96T50 ul50 ul100ug Lyophilized100ug Lyophilized100ug Lyophilized100ug Lyophilized100ug Lyophilized0.1ml100ug Lyophilized

Related Pathways

paperclip

#27069011   2016/04/11 To Up

Establishment and applications of male germ cell and Sertoli cell lines.

Within the seminiferous tubules there are two major cell types, namely male germ cells and Sertoli cells. Recent studies have demonstrated that male germ cells and Sertoli cells can have significant applications in treating male infertility and other diseases. However, primary male germ cells are hard to proliferate in vitro and the number of spermatogonial stem cells is scarce. Therefore, methods that promote the expansion of these cell populations are essential for their use from the bench to the bed side. Notably, a number of cell lines for rodent spermatogonia, spermatocytes and Sertoli cells have been developed, and significantly we have successfully established a human spermatogonial stem cell line with an unlimited proliferation potential and no tumor formation. This newly developed cell line could provide an abundant source of cells for uncovering molecular mechanisms underlying human spermatogenesis and for their utilization in the field of reproductive and regenerative medicine. In this review, we discuss the methods for establishing spermatogonial, spermatocyte and Sertoli cell lines using various kinds of approaches, including spontaneity, transgenic animals with oncogenes, simian virus 40 (SV40) large T antigen, the gene coding for a temperature-sensitive mutant of p53, telomerase reverse gene (Tert), and the specific promoter-based selection strategy. We further highlight the essential applications of these cell lines in basic research and translation medicine.
Hong Wang, Liping Wen, Qingqing Yuan, Min Sun, Minghui Niu, Zuping He

1273 related Products with: Establishment and applications of male germ cell and Sertoli cell lines.

10 plates100 plates100 plates10 plates10 plates100 Plates10 Plates100 plates1 kit

Related Pathways

paperclip

#26876197   2016/02/15 To Up

Heterozygous p53(V172F) mutation in cisplatin-resistant human tumor cells promotes MDM4 recruitment and decreases stability and transactivity of p53.

Cisplatin is an important antitumor agent, but its clinical utility is often limited by multifactorial mechanism of resistance. Loss of tumor suppressor p53 function is a major mechanism that is affected by either mutation in the DNA-binding domain or dysregulation by overexpression of p53 inhibitors MDM2 and MDM4, which destabilize p53 by increasing its proteosomal degradation. In the present study, cisplatin-resistant 2780CP/Cl-16 ovarian tumor cells expressed a heterozygous, temperature-sensitive p53(V172F) mutation, which reduced p53 half-life by two- to threefold compared with homozygous wild-type (wt) p53 in parental A2780 cells. Although reduced p53 stability in 2780CP/Cl-16 cells was associated with moderate cellular overexpression of MDM2 or MDM4 (<1.5-fold), their binding to p53 was substantially enhanced (five- to eightfold). The analogous cisplatin-resistant 2780CP/Cl-24 cells, which express loss of p53 heterozygosity, retained the p53(V172F) mutation and high p53-MDM4 binding, but demonstrated lower p53-bound MDM2 that was associated with reduced p53 ubiquitination and enhanced p53 stability. The inference that p53 was unstable as a heteromeric p53(wt)/p53(V172F) complex was confirmed in 2780CP/Cl-24 cells transfected with wt p53 or multimer-inhibiting p53(L344P) mutant, and further supported by normalization of p53 stability in both resistant cell lines grown at the permissive temperature of 32.5 °C. Surprisingly, in 2780CP/Cl-16 and 2780CP/Cl-24 models, cisplatin-induced transactivity of p53 was attenuated at 37 °C, and this correlated with cisplatin resistance. However, downregulation of MDM2 or MDM4 by small interfering RNA in either resistant cell line induced p53 and restored p21 transactivation at 37 °C, as did cisplatin-induced DNA damage at 32.5 °C that coincided with reduced p53-MDM4 binding and cisplatin resistance. These results demonstrate that cisplatin-mediated p53(V172F) mutation regulates p53 stability at the normothermic temperature, but it is the increased recruitment of MDM4 by the homomeric or heteromeric mutant p53(V172F) complex that inhibits p53-dependent transactivation. This represents a novel cellular mechanism of p53 inhibition, and, thereby, induction of cisplatin resistance.
X Xie, G Lozano, Z H Siddik

2697 related Products with: Heterozygous p53(V172F) mutation in cisplatin-resistant human tumor cells promotes MDM4 recruitment and decreases stability and transactivity of p53.

1.00 flask0.1 mg1.00 flask1 ml100ul1.00 flask1 mg10 ug1.00 flask

Related Pathways

paperclip

Error loading info... Pleas try again later.
paperclip

#25453755   2014/11/06 To Up

Inactivation of p53 in Human Keratinocytes Leads to Squamous Differentiation and Shedding via Replication Stress and Mitotic Slippage.

Tumor suppressor p53 is a major cellular guardian of genome integrity, and its inactivation is the most frequent genetic alteration in cancer, rising up to 80% in squamous cell carcinoma (SCC). By adapting the small hairpin RNA (shRNA) technology, we inactivated endogenous p53 in primary epithelial cells from the epidermis of human skin. We show that either loss of endogenous p53 or overexpression of a temperature-sensitive dominant-negative conformation triggers a self-protective differentiation response, resulting in cell stratification and expulsion. These effects follow DNA damage and exit from mitosis without cell division. p53 preserves the proliferative potential of the stem cell compartment and limits the power of proto-oncogene MYC to drive cell cycle stress and differentiation. The results provide insight into the role of p53 in self-renewal homeostasis and help explain why p53 mutations do not initiate skin cancer but increase the likelihood that cancer cells will appear.
Ana Freije, Rut Molinuevo, Laura Ceballos, Marta Cagigas, Pilar Alonso-Lecue, René Rodriguez, Pablo Menendez, Daniel Aberdam, Ernesto De Diego, Alberto Gandarillas

2733 related Products with: Inactivation of p53 in Human Keratinocytes Leads to Squamous Differentiation and Shedding via Replication Stress and Mitotic Slippage.

200 25 1000 100 100ul100 μg0.1 mg1 ml 100 UG 100ul

Related Pathways

paperclip

#24449472   2014/03/14 To Up

TP53 mutants in the tower of babel of cancer progression.

Loss-of-function, partial-function, altered-function, dominant-negative, temperature sensitive, interfering, contact, structural, unfolded, misfolded, dimeric, monomeric, non-cooperative, unstable, supertrans, superstable, intragenic suppressor. TP53 mutants are many, more than 2,000 in fact, and they can be very diverse. Sporadic; germline; gain-of-function (GoF); oncogenic; rebel-angel; yin and yang; prion-like; metastasis-inducer; mediator of chemo-resistance; modifier of stemness. TP53 mutants can impact important cancer clinical variables, in multiple, often subtle ways, as revealed by cell-based assays as well as animal models. Here, we review studies investigating TP53 mutants for their effect on sequence-specific transactivation function, and especially recent findings on how TP53 mutants can exhibit GoF properties. We also review reports on TP53 mutants' impact on cancer cell transcriptomes and studies with Li-Fraumeni patients trying to classify and predict phenotypes in relation to experimentally determined transcription fingerprints. Finally, we provide an example of the complexity of correlating TP53 mutant functionality to clinical variables in sporadic cancer patients. Conflicting results and limitations of experimental approaches notwithstanding, the study of TP53 mutants has provided a rich body of knowledge, mostly available in the public domain and accessible through databases, which is beginning to impact cancer intervention strategies.
Alessandra Bisio, Yari Ciribilli, Gilberto Fronza, Alberto Inga, Paola Monti

1434 related Products with: TP53 mutants in the tower of babel of cancer progression.



Related Pathways

paperclip

#23410627   2012/12/31 To Up

Novel electrochemical biosensor based on functional composite nanofibers for sensitive detection of p53 tumor suppressor gene.

A novel electrochemical biosensor based on functional composite nanofibers for sensitive hybridization detection of p53 tumor suppressor using methylene blue (MB) as an electrochemical indicator is developed. The carboxylated multi-walled carbon nanotubes (MWNTs) doped nylon 6 (PA6) composite nanofibers (MWNTs-PA6) was prepared using electrospinning, which served as the nanosized backbone for pyrrole (Py) electropolymerization. The functional composite nanofibers (MWNTs-PA6-PPy) used as supporting scaffolds for ssDNA immobilization can dramatically increase the amount of DNA attachment and the hybridization sensitivity. The biosensor displayed good sensitivity and specificity. The target wild type p53 sequence (wtp53) can be detected as low as 50 fM and the discrimination is up to 57.5% between the wtp53 and the mutant type p53 sequence (mtp53). It holds promise for the early diagnosis of cancer development and monitoring of patient therapy.
Xiaoying Wang, Xiaobing Wang, Xiaoning Wang, Fentian Chen, Kehui Zhu, Qian Xu, Meng Tang

1864 related Products with: Novel electrochemical biosensor based on functional composite nanofibers for sensitive detection of p53 tumor suppressor gene.

96 tests100tests50 ug100ug2x96 well plate100ug50 ug

Related Pathways

paperclip

#23251530   2012/12/12 To Up

Molecular mechanism of mutant p53 stabilization: the role of HSP70 and MDM2.

Numerous p53 missense mutations possess gain-of-function activities. Studies in mouse models have demonstrated that the stabilization of p53 R172H (R175H in human) mutant protein, by currently unknown factors, is a prerequisite for its oncogenic gain-of-function phenotype such as tumour progression and metastasis. Here we show that MDM2-dependent ubiquitination and degradation of p53 R175H mutant protein in mouse embryonic fibroblasts is partially inhibited by increasing concentration of heat shock protein 70 (HSP70/HSPA1-A). These phenomena correlate well with the appearance of HSP70-dependent folding intermediates in the form of dynamic cytoplasmic spots containing aggregate-prone p53 R175H and several molecular chaperones. We propose that a transient but recurrent interaction with HSP70 may lead to an increase in mutant p53 protein half-life. In the presence of MDM2 these pseudoaggregates can form stable amyloid-like structures, which occasionally merge into an aggresome. Interestingly, formation of folding intermediates is not observed in the presence of HSC70/HSPA8, the dominant-negative K71S variant of HSP70 or HSP70 inhibitor. In cancer cells, where endogenous HSP70 levels are already elevated, mutant p53 protein forms nuclear aggregates without the addition of exogenous HSP70. Aggregates containing p53 are also visible under conditions where p53 is partially unfolded: 37°C for temperature-sensitive variant p53 V143A and 42°C for wild-type p53. Refolding kinetics of p53 indicate that HSP70 causes transient exposure of p53 aggregate-prone domain(s). We propose that formation of HSP70- and MDM2-dependent protein coaggregates in tumours with high levels of these two proteins could be one of the mechanisms by which mutant p53 is stabilized. Moreover, sequestration of p73 tumour suppressor protein by these nuclear aggregates may lead to gain-of-function phenotypes.
Milena Wiech, Maciej B Olszewski, Zuzanna Tracz-Gaszewska, Bartosz Wawrzynow, Maciej Zylicz, Alicja Zylicz

2414 related Products with: Molecular mechanism of mutant p53 stabilization: the role of HSP70 and MDM2.

5mg 5 G5mg1 ml50 50 10 mg50 ug500g100ug10mg

Related Pathways

paperclip

#23165212   2012/11/19 To Up

Transcriptional regulation of thymine DNA glycosylase (TDG) by the tumor suppressor protein p53.

Thymine DNA glycosylase (TDG) belongs to the superfamily of uracil DNA glycosylases (UDG) and is the first enzyme in the base-excision repair pathway (BER) that removes thymine from G:T mismatches at CpG sites. This glycosylase activity has also been found to be critical for active demethylation of genes involved in embryonic development. Here we show that wild-type p53 transcriptionally regulates TDG expression. Chromatin immunoprecipitation (ChIP) and luciferase assays indicate that wild-type p53 binds to a domain of TDG promoter containing two p53 consensus response elements (p53RE) and activates its transcription. Next, we have used a panel of cell lines with different p53 status to demonstrate that TDG mRNA and protein expression levels are induced in a p53-dependent manner under different conditions. This panel includes isogenic breast and colorectal cancer cell lines with wild-type or inactive p53, esophageal squamous cell carcinoma cell lines lacking p53 or expressing a temperature-sensitive p53 mutant and normal human bronchial epithelial cells. Induction of TDG mRNA expression is accompanied by accumulation of TDG protein in both nucleus and cytoplasm, with nuclear re-localization occurring upon DNA damage in p53-competent, but not -incompetent, cells. These observations suggest a role for p53 activity in TDG nuclear translocation. Overall, our results show that TDG expression is directly regulated by p53, suggesting that loss of p53 function may affect processes mediated by TDG, thus negatively impacting on genetic and epigenetic stability.
Nathalia Meireles da Costa, Agnès Hautefeuille, Marie-Pierre Cros, Matias Eliseo Melendez, Timothy Waters, Peter Swann, Pierre Hainaut, Luis Felipe Ribeiro Pinto

1248 related Products with: Transcriptional regulation of thymine DNA glycosylase (TDG) by the tumor suppressor protein p53.

100ug100ug10020100ug Lyophilized50500IU25100ug Lyophilized100ug Lyophilized10 20

Related Pathways

paperclip

#22964580   2012/09/10 To Up

Multiple roles of p53-related pathways in somatic cell reprogramming and stem cell differentiation.

The inactivation of p53 functions enhances the efficiency and decreases the latency of producing induced pluripotent stem cells (iPSC) in culture. The formation of iPSCs in culture starts with a rapid set of cell divisions followed by an epigenetic reprogramming of the DNA and chromatin. The mechanisms by which the p53 protein inhibits the formation of iPSCs are largely unknown. Using a temperature sensitive mutant of the p53 (Trp53) gene, we examined the impact of the temporal expression of wild type p53 in preventing stem cell induction from somatic cells. We also explored how different p53 mutant alleles affect the reprogramming process. We found that little or no p53 activity favors the entire process of somatic cell reprogramming. Reactivation of p53 at any time point during the reprogramming process not only interrupted the formation of iPSCs, but also induced newly formed stem cells to differentiate. Among p53-regulated genes, p21 (Cdkn1a), but not Puma (Bbc3) played a partial role in iPSCs formation probably by slowing cell division. Activation of p53 functions in iPSCs induced senescence and differentiation in stem cell populations. High rate of birth defects and increases in DNA methylation at the IGF2-H19 loci in female offspring of p53 knockout mice suggested that the absence of p53 may give rise to epigenetic instability in a stochastic fashion. Consistently, selected p53 missense mutations showed differential effects on the stem cell reprogramming efficiency in a c-Myc dependent manner. The absence of p53 activity and functions also contributed to an enhanced efficiency of iPSC production from cancer cells. The production of iPSCs in culture from normal and cancer cells, although different from each other in several ways, both responded to the inhibition of reprogramming by the p53 protein.
Lan Yi, Chiwei Lu, Wenwei Hu, Yvonne Sun, Arnold J Levine

2265 related Products with: Multiple roles of p53-related pathways in somatic cell reprogramming and stem cell differentiation.

1 mg24 wells10 ug100 μg3 inhibitors24 wells2 Pieces/Box25 ml.1x10e7 cells100ug Lyophilized100 µg

Related Pathways