Only in Titles

Search results for: Antibody

paperclip

Error loading info... Pleas try again later.
paperclip

#32473415   2020/04/19 To Up

Evaluation of the Dual Path Platform (DPP) VetTB assay for the detection of Mycobacterium bovis infection in badgers.

Bovine tuberculosis (bTB), caused by Mycobacterium bovis, represents a major animal health issue. In the United Kingdom and the Republic of Ireland, European badgers (Meles meles) have been shown to act as a reservoir of M. bovis infection, hindering the eradication of bTB in livestock. The availability of suitable diagnostic assays, particularly those that may be applied in a "trap-side" setting, would facilitate the implementation of a wider range of disease control strategies. Here we evaluate the Dual Path Platform (DPP) VetTB assay, a lateral-flow type test for detecting antibodies to M. bovis antigens (MPB83 and ESAT-6/CFP-10). Both serum and whole blood were evaluated as diagnostic samples. Additionally, two methods were evaluated for interpretation of test results (qualitative interpretation by eye and quantitative measurement using an optical reader). The antibody response to MPB83 detected by the DPP VetTB assay increased significantly following experimental M. bovis infection of badgers, whilst the response to ESAT-6/CFP-10 showed no significant change. In sera from TB-free captive and naturally M. bovis infected wild badgers the MPB83 response exhibited a sensitivity of 55 % by eye and quantitative reader (95 % CI: 40-71 and 38-71, respectively), with slightly lower specificity when read by eye (93 % compared to 98 %; 95 % CI: 85-100 and 90-100, respectively). In whole blood, the DPP VetTB assay MPB83 response exhibited a sensitivity of 65 % (95 % CI: 50-80) when interpreted by eye and 53 % (95 % CI: 36-69) using quantitative values, whilst the specificity was 94 % and 98 % respectively (95 % CI: 88-100 and 90-100). Comparison with contemporaneous diagnostic test results from putatively naturally infected and TB-free badgers demonstrated varying levels of agreement. Using sera from naturally M. bovis infected and TB-free badgers, with post mortem confirmation of disease status, the DPP VetTB assay exhibited a sensitivity of 60 % (95 % CI: 41-77) when interpreted using quantitative values (specificity 95 %; 95 % CI: 76-100), and 67 % (95 % CI: 50-84) when read by eye (specificity 95 %; 95 % CI: 86-100). Further work is required to robustly characterize the DPP VetTB assay's performance in a wider selection of samples, and in the practical and epidemiological contexts in which it may be applied.
Roland T Ashford, Paul Anderson, Laura Waring, Dipesh Davé, Freya Smith, Richard J Delahay, Eamonn Gormley, Mark A Chambers, Jason Sawyer, Sandrine Lesellier

2632 related Products with: Evaluation of the Dual Path Platform (DPP) VetTB assay for the detection of Mycobacterium bovis infection in badgers.

1

Related Pathways

paperclip

#32473361   2020/05/27 To Up

Immunogenicity and protective efficacy of Yersinia ruckeri lipopolysaccharide (LPS), encapsulated by alginate-chitosan micro/nanoparticles in rainbow trout (Oncorhyncus mykiss).

Considering the many advantages of oral vaccines in aquaculture, several studies have been conducted in this area recently. In this study, immunization and protective power of the oral vaccine of Yersinia ruckeri encapsulated with Alginate-Chitosan micro/nanoparticles were evaluated in rainbow trout. For this purpose, 720 juvenile rainbow trout (9 ± 1.8 g) were divided into 8 groups in three replications (30 fish each) as follows: Groups A, B and C, were immunized with Yersinia ruckeri lipopolysaccharide (LPS), LPS+Formalin Killed Cells (FKC) and FKC alone, groups D, E, and F were immunized with encapsulated LPS, LPS+FKC and FKC, respectively. The G and H groups considered as encapsulated and non-encapsulated control, respectively. Micro/nanoencapsulation with alginate-chitosan was performed by internal emulsification method and vaccination were conductrd in the first and third weeks via oral route. Sampling was performed on days 0, 30, and 60 of experiment. Anti Y. ruckeri antibody titer in serum, intestine and skin mucus were measured via ELISA method. Non-specific immune response including: serum lysozyme, complement, bactericidal and respiratory burst activity, serum protein and globulin level, as well as white blood cell count were compared among the groups. The expression of IgT gene in the intestine and TCR gene in the anterior kidney were also investigated. At the end of the study, the fish were challenged with Y. ruckeri through immerssion and intraperitoneal routs and the relative survival rate was evaluated. Result showed that the antibody level in serum, skin and intestine was significantly higher in group E and F than control groups (P < 0.05), meanwhile serum, skin and intestine antibody level in all vaccinated groups were significantly (P < 0.01) higher in day 30 and 60 compare to zero day. Non-specific immunity factors including: serum lysozyme, complement, and respiratory burst activity as well as WBC, protein and Globulin level were significantly higher in E and F groups not only in day 30 but also in day 60 of experiment (P < 0.05). Cumulative mortality following injection and bath challenge were significantly (P = 0.004) lower (35%-45%) in groups E and F compare to control group (80%). The IgT and TCR gene expression in groups D, E and F were significantly higher (P < 0.05) than control group. Highest upregulation of IgT and TCR gene expression in vaccinated groups were seen at day 30 and 60 respectively which were significantly (P < 0.001) higher than day zero. Generally, it can be concluded that nano/micronanoencapsulation of Y. ruckeri FKC+LPS with chitosan-alginate, not only increases protective efficacy of oral vaccine, but improves specific and non-specific immune responses in rainbow trout.
Zahra Tulaby Dezfuly, Mojtaba Alishahi, Masoud Ghorbanpoor, Mohammad Reza Tabandeh, Mehrzad Mesbah

1131 related Products with: Immunogenicity and protective efficacy of Yersinia ruckeri lipopolysaccharide (LPS), encapsulated by alginate-chitosan micro/nanoparticles in rainbow trout (Oncorhyncus mykiss).

5mg 100 G100ug0.5 mg100ug500 tests1 Set10

Related Pathways

paperclip

#32473290   2020/05/27 To Up

Sortase-A mediated chemoenzymatic lipidation of single-domain antibodies for cell membrane engineering.

Membrane engineering has versatile applications in adoptive cell therapies, immune therapy or drug delivery. Incorporation of lipidated antibody-derived ligands into cells may enforce supraphysiological cell interactions that offer new therapeutic approaches. A challenge is the defined synthesis of lipidated ligands that effectively interact with such membranes.
Steffen Wöll, Christopher Bachran, Stefan Schiller, Lee Kim Swee, Regina Scherließ

2460 related Products with: Sortase-A mediated chemoenzymatic lipidation of single-domain antibodies for cell membrane engineering.

4 Membranes/Box1 mg4 Membranes/Box2 Pieces/Box200 100 μg4 Membranes/Box0.1 mg0.5 ml50 mg1 mL1 mL

Related Pathways

paperclip

Error loading info... Pleas try again later.
paperclip

Error loading info... Pleas try again later.
paperclip

#32473188   2020/05/27 To Up

Predicting bioavailability of monoclonal antibodies after subcutaneous administration: Open innovation challenge.

Despite the increasing trend towards subcutaneous delivery of monoclonal antibodies, factors influencing the subcutaneous bioavailability of these molecules remain poorly understood. To address critical knowledge gaps and issues during development of subcutaneous dosage forms for monoclonal antibodies, the Subcutaneous Drug Delivery and Development Consortium was convened in 2018 as a pre-competitive collaboration of recognized industry experts. One of the Consortium's eight problem statements highlights the challenges of predicting human bioavailability of subcutaneously administered monoclonal antibodies due to a lack of reliable in vitro and preclinical in vivo predictive models. In this paper, we assess the current landscape in subcutaneous bioavailability prediction for monoclonal antibodies and discuss the gaps and opportunities associated with bioavailability models for biotherapeutics. We also issue an open challenge to industry and academia, encouraging the development of reliable models to enable subcutaneous bioavailability prediction of therapeutic large molecules in humans and improve translation from preclinical species.
Manuel Sánchez-Félix, Matt Burke, Hunter H Chen, Claire Patterson, Sachin Mittal

2697 related Products with: Predicting bioavailability of monoclonal antibodies after subcutaneous administration: Open innovation challenge.

200 ug1 mg100.00 ug100 ug1 mg100.00 ug200 ug100.00 ug1 mg100.00 ug1 mg100.00 ug

Related Pathways

paperclip

Error loading info... Pleas try again later.
paperclip

#32473161   2020/05/27 To Up

On the benefits of flattening the curve: A perspective.

The many variations on a graphic illustrating the impact of non-pharmaceutical measures to mitigate pandemic influenza that have appeared in recent news reports about COVID-19 suggest a need to better explain the mechanism by which social distancing reduces the spread of infectious diseases. And some reports understate one benefit of reducing the frequency or proximity of interpersonal encounters, a reduction in the total number of infections. In hopes that understanding will increase compliance, we describe how social distancing a) reduces the peak incidence of infections, b) delays the occurrence of this peak, and c) reduces the total number of infections during epidemics. In view of the extraordinary efforts underway to identify existing medications that are active against SARS-CoV-2 and to develop new antiviral drugs, vaccines and antibody therapies, any of which may have community-level effects, we also describe how pharmaceutical interventions affect transmission.
Zhilan Feng, John W Glasser, Andrew N Hill

1432 related Products with: On the benefits of flattening the curve: A perspective.

0.1 mg100.00 ul1 ml 100ul100.00 ul100

Related Pathways

paperclip

#32473121   2020/05/27 To Up

Mitochondrial DNA methylation misleads global DNA methylation detected by antibody-based methods.

Cytosine methylation is the leading epigenetic modification on DNA playing a role in gene regulation. Methylation can occur in cytosines of any nucleic acids in cytosol (as mitochondrial DNA, mtDNA) and in nuclear DNA (ncDNA). mtDNA exists as multiple copies within numerous mitochondria. This suggests that the number of mitochondria and mtDNA copy number can indicate the presence of a significant amount of DNA methylation within total DNA methylation detected. However, immunofluorescence method does not have a step to discriminate the staining between ncDNA and mtDNA. Antibodies used in immunological methods are methylation-specific but not selective for DNA type and they can bind to methylated cytosines in any DNA within the specimen. Current study aimed to understand whether mtDNA methylation interferes with the detection of nuclear DNA methylation by immunofluorescence and affinity enrichment (ELISA) in different mammalian cells. Experiments were performed to distinguish methylation between mtDNA and ncDNA. Immunofluorescence showed that there was no significant difference in the detected amount of methylation between mitochondrial and nuclear DNA. But ELISA revealed that up to 25% of cellular methylation was derived from mitochondria. This suggests that significant contamination of mtDNA methylation with ncDNA methylation can result in overestimation of the quantitative level of nuclear methylation.
Selcen Celik Uzuner

2717 related Products with: Mitochondrial DNA methylation misleads global DNA methylation detected by antibody-based methods.

96 assays 100ul100ug Lyophilized100ug100ug100ug Lyophilized100ug100ug Lyophilized100ug100ug Lyophilized

Related Pathways