Only in Titles

Search results for: Cytochrome

paperclip

#36473170   2022/12/06 To Up

Probing the Role of CYP2 Enzymes in the Atropselective Metabolism of Polychlorinated Biphenyls Using Liver Microsomes from Transgenic Mouse Models.

Chiral polychlorinated biphenyls (PCB) are environmentally relevant developmental neurotoxicants. Because their hydroxylated metabolites (OH-PCBs) are also neurotoxic, it is necessary to determine how PCB metabolism affects the developing brain, for example, in mouse models. Because the cytochrome P450 isoforms involved in the metabolism of chiral PCBs remain unexplored, we investigated the metabolism of PCB 91 (2,2',3,4',6-pentachlorobiphenyl), PCB 95 (2,2',3,5',6-pentachlorobiphenyl), PCB 132 (2,2',3,3',4,6'-hexachlorobiphenyl), and PCB 136 (2,2',3,3',6,6'-hexachlorobiphenyl) using liver microsomes from male and female -null, -null, and wild-type mice. Microsomes, pooled by sex, were incubated with 50 μM PCB for 30 min, and the levels and enantiomeric fractions of the OH-PCBs were determined gas chromatographically. All four PCB congeners appear to be atropselectively metabolized by CYP2A(4/5)BGS and CYP2F2 enzymes in a congener- and sex-dependent manner. The OH-PCB metabolite profiles of PCB 91 and PCB 132, PCB congeners with one -chlorine substituent, differed between null and wild-type mice. No differences in the metabolite profiles were observed for PCB 95 and PCB 136, PCB congeners without a -chlorine group. These findings suggest that -null and -null mice can be used to study how a loss of a specific metabolic function (e.g., deletion of or ) affects the toxicity of chiral PCB congeners.
Hans-Joachim Lehmler, Eric Uwimana, Laura E Dean, Nataliia Kovalchuk, Qing-Yu Zhang, Xinxin Ding

2408 related Products with: Probing the Role of CYP2 Enzymes in the Atropselective Metabolism of Polychlorinated Biphenyls Using Liver Microsomes from Transgenic Mouse Models.

100 1100 μg

Related Pathways

paperclip

#36472706   2022/12/06 To Up

Respiratory substrate preferences in mitochondria isolated from different tissues of three fish species.

Energy requirements of tissues vary greatly and exhibit different mitochondrial respiratory activities with variable participation of both substrates and oxidative phosphorylation. The present study aimed to (1) compare the substrate preferences of mitochondria from different tissues and fish species with different ecological characteristics, (2) identify an appropriate substrate for comparing metabolism by mitochondria from different tissues and species, and (3) explore the relationship between mitochondrial metabolism mechanisms and ecological energetic strategies. Respiration rates and cytochrome c oxidase (CCO) activities of mitochondria isolated from heart, brain, kidney, and other tissues from Silurus meridionalis, Carassius auratus, and Megalobrama amblycephala were measured using succinate (complex II-linked substrate), pyruvate (complex I-linked), glutamate (complex I-linked), or combinations. Mitochondria from all tissues and species exhibited substrate preferences. Mitochondria exhibited greater coupling efficiencies and lower leakage rates using either complex I-linked substrates, whereas an opposite trend was observed for succinate (complex II-linked). Furthermore, maximum mitochondrial respiration rates were higher with the substrate combinations than with individual substrates; therefore, state III respiration rates measured with substrate combinations could be effective indicators of maximum mitochondrial metabolic capacity. Regardless of fish species, both state III respiration rates and CCO activities were the highest in heart mitochondria, followed by red muscle mitochondria. However, differences in substrate preferences were not associated with species feeding habit. The maximum respiration rates of heart mitochondria with substrate combinations could indicate differences in locomotor performances, with higher metabolic rates being associated with greater capacity for sustained swimming.
Jing Long, Yiguo Xia, Hanxun Qiu, Xiaojun Xie, Yulian Yan

1222 related Products with: Respiratory substrate preferences in mitochondria isolated from different tissues of three fish species.

50 ul96T 100ul 100ul 100ul 100ul96T

Related Pathways

paperclip

#36472117   // To Up

Heavy Metals, Halogenated Hydrocarbons, Phthalates, Glyphosate, Cordycepin, Alcohol, Drugs, and Herbs, Assessed for Liver Injury and Mechanistic Steps.

Aluminum, arsenic, cadmium, chromium, cobalt, copper, iron, lead, mercury, nickel, thallium, titanium, zinc, carbon tetrachloride, phthalates, glyphosate, alcohol, drugs, and herbs are under discussion having the potential to injure the human liver, but allocation of the injury to the hepatotoxicant as exact cause is difficult for physicians and requires basic clinical knowledge of toxicology details. Liver injury occurs at a variable extent depending on the dose, mostly reproducible in animal models that allow studies on molecular steps leading to the hepatocellular injury. These exogenous hepatotoxins may cause an overproduction of reactive oxidative species (ROS), which are generated during microsomal or mitochondrial oxidative stress from incomplete oxygen split and trigger the injury if protective antioxidant capacities are reduced. Primary subcelluar target organelles involved are liver mitochondria through lipid peroxidation of membrane structures and the action of free radicals such as singlet radical 1O2, superoxide radical HO•2, hydrogen peroxide H2O2, hydroxyl radical HO•, alkoxyl radical RO•, and peroxyl radical ROO•. They attempt covalent binding to macromolecular structural proteins. As opposed to inorganic chemicals, liver injury due to chemicals with an organic structure proceedes via the hepatic microsomal cytochrome P450 with its different isoforms. In sum, many exogenous chemicals may have the potential of liver injury triggerd by overproduced ROS leading primarily to impairment of mitochondial functions in the course of structural mitochondial membrane dearrangement. As clinical data were often incomplete, future clinical prototols should focus on meeting liver injury criteria, exclusion of alternative causes, a robust causality evaluation management, and obtaining liver histology if clinically indicated and of benefit for the patient.
Rolf Teschke, Tran Dang Xuan

2753 related Products with: Heavy Metals, Halogenated Hydrocarbons, Phthalates, Glyphosate, Cordycepin, Alcohol, Drugs, and Herbs, Assessed for Liver Injury and Mechanistic Steps.

100 mg200ug200ul200 10 mg 25 MG25 mg100 mg10 mg100ug200ug

Related Pathways

paperclip

#36472108   // To Up

PGRMC? Grand-Scale Biology from Early Eukaryotes and Eumetazoan Animal Origins.

The title usage of 'from where have you come' is from a now dead language (Latin) that foundationally influenced modern English (not the major influence, but an essential formative one). This is an apt analogy for how both the ancient eukaryotic and eumetazoan functions of PGRMC proteins (PGRMC1 and PGRMC2 in mammals) probably influence modern human biology: via a formative trajectory from an evolutionarily foundational fulcrum. There is an arguable probability, although not a certainty, that PGRMC-like proteins were involved in eukaryogenesis. If so, then the proto-eukaryotic ancestral protein is modelled as having initiated the oxygen-induced and CYP450 (Cytochrome P450)-mediated synthesis of sterols in the endoplasmic reticulum to regulate proto-mitochondrial activity and heme homeostasis, as well as having enabled sterol transport between endoplasmic reticulum (ER) and mitochondria membranes involving the actin cytoskeleton, transport of heme from mitochondria, and possibly the regulation/origins of mitosis/meiosis. Later, during animal evolution, the last eumetazoan common ancestor (LEUMCA) acquired PGRMC phosphorylated tyrosines coincidentally with the gastrulation organizer, Netrin/deleted in colorectal carcinoma (DCC) signaling, muscle fibers, synapsed neurons, and neural recovery via a sleep-like process. Modern PGRMC proteins regulate multiple functions, including CYP450-mediated steroidogenesis, membrane trafficking, heme homeostasis, glycolysis/Warburg effect, fatty acid metabolism, mitochondrial regulation, and genomic CpG epigenetic regulation of gene expression. The latter imposes the system of differentiation status-sensitive cell-type specific proteomic complements in multi-tissued descendants of the LEUMCA. This paper attempts to trace PGRMC functions through time, proposing that key functions were involved in early eukaryotes, and were later added upon in the LEUMCA. An accompanying paper considers the implications of this awareness for human health and disease.
Michael A Cahill

2395 related Products with: PGRMC? Grand-Scale Biology from Early Eukaryotes and Eumetazoan Animal Origins.

100ug1mg0.1mg1 kit500 mg1mg1mg50 ug 25 mg2.5 lt10mg1mg

Related Pathways

paperclip

#36472037   // To Up

[Schisandrin C improves acetaminophen-induced liver injury in mice by regulating Nrf2 signaling pathway].

Excess acetaminophen(APAP) can be converted by the cytochrome P450 system to the toxic metabolite N-acetyl-p-benzoquinoneimine(NAPQI), which consumes glutathione(GSH). When GSH is depleted, NAPQI covalently binds with proteins, inducing mitochondrial dysfunction and oxidative stress and thereby leading to hepatotoxicity. Schisandrin C(SinC) is a dibenzocyclooctadiene derivative isolated from Schisandra chinensis. Although there is some evidence showing that SinC has hepatoprotective activity, its protective effect and mechanism on APAP-induced liver injury remain unclear. In this paper, an acute liver injury mouse model was established by intraperitoneal injection of APAP at a dose of 400 mg·kg~(-1) to evaluate the effect of SinC administration on the APAP-induced liver injury and its mechanism through an animal experiment. At the same time, a potential candidate drug was provi-ded for traditional Chinese medicine(TCM) prevention and treatment of overdose APAP-induced liver injury. In the APAP-induced liver injury mouse model, we found that SinC can relieve hepatic histopathological lesions and significantly reduce the activities of alanine aminotransferase(ALT), aspartate aminotransferase(AST) and alkaline phosphatase(ALP). It was also capable of increasing the content of GSH and superoxide dismutase(SOD) and decreasing the levels of total bilirubin(TBIL), direct bilirubin(DBIL), malondialdehyde(MDA), interleukin-6(IL-6) and tumor necrosis factor-α(TNF-α). Further analysis showed that SinC decreased the content of CYP2 E1 in liver tissues at protein and mRNA levels and increased nuclear factor erythroid 2-related factor 2(Nrf2) and the expression of its downstream targets(including HO-1, NQO1 and GCLC). Taken together, the above results indicate that SinC can alleviate APAP-induced liver injury by reducing the expression of CYP2 E1, suppressing apoptosis, improving inflammatory response and activating the Nrf2 signaling pathway to inhibit oxidative stress.
Wen-Zhang Dai, Zhao-Fang Bai, Ting-Ting He, Xiao-Yan Zhan, Qiang Li, Jing Zhao, Xiao-He Xiao

2334 related Products with: [Schisandrin C improves acetaminophen-induced liver injury in mice by regulating Nrf2 signaling pathway].

2 Pieces/Box2 Pieces/Box2 Pieces/Box2 Pieces/Box2 Pieces/Box2 Pieces/Box2 Pieces/Box2 Pieces/Box2 Pieces/Box2 Pieces/Box

Related Pathways

paperclip

#36472013   // To Up

[Effects of Gukang Capsules on activity and protein expression of hepatic cytochrome P450 enzymes in rats].

Gukang Capsules are often used in combination with drugs to treat fractures, osteoarthritis, and osteoporosis. Cytochrome P450(CYP450) mainly exists in the liver and participates in the oxidative metabolism of a variety of endogenous and exogenous substances and serves as an important cause of drug-metabolic interactions and adverse reactions. Therefore, it is of great significance to study the effect of Gukang Capsules on the activity and expression of CYP450 for increasing its clinical rational medication and improving the safety of drug combination. In this study, the Cocktail probe method was used to detect the changes in the activities of CYP1A2, CYP3A2, CYP2C11, CYP2C19, CYP2D4, and CYP2E1 in rat liver after treatment with high-, medium-and low-dose Gukang Capsules. The rat liver microsomes were extracted by the calcium chloride method, and protein expression of the above six CYP isoform enzymes was detected by Western blot. The results showed that the low-dose Gukang Capsules could induce CYP3A2 and CYP2D4 in rats, medium-dose Gukang Capsules had no effect on them, and high-dose Gukang Capsules could inhibit them in rats. The high-dose Gukang Capsules did not affect CYP2C11 in rats, but low-and medium-dose Gukang Capsules could induce CYP2C11 in rats. Gukang Capsules could inhibit CYP2C19 in rats and induce CYP1A2 in a dose-independent manner, but did not affect CYP2E1. If Gukang Capsules were co-administered with CYP1A2, CYP2C19, CYP3A2, CYP2C11, and CYP2D4 substrates, the dose should be adjusted to avoid drug interactions.
Chang Yang, Jing Li, Jia Sun, Ding-Yan Lu, Shuai-Shuai Chen, Yong-Jun Li, Yong-Lin Wang, Ting Liu

2948 related Products with: [Effects of Gukang Capsules on activity and protein expression of hepatic cytochrome P450 enzymes in rats].

1mg1 Set1 Set1 Set100 μg1 Set5ug100ug Lyophilized1 Set1 Set

Related Pathways

paperclip

#36471974   // To Up

[Effect of ethanol extract of Gastrodiae Rhizoma on mitochondrial dysfunction in cerebral ischemia-reperfusion injury].

This study observed the effects of ethanol extract of Gastrodiae Rhizoma(GE) on multiple aspects of mitochondrial dysfunction by investigating the mitochondria isolated from rat brains subjected to focal middle cerebral artery occlusion/reperfusion(MCAO/R). SD rats were randomly divided into a sham operation group(Sham), a model group(MCAO/R), low-and high-dose ethanol extract of GE groups(262.3 and 524.6 mg·kg~(-1)), and a nimodipine group(Nim, 15 mg·kg~(-1)). After continuous intragastric administration for 7 days, the MCAO/R model was induced in rats by the suture method. The neurological function and percentage of cerebral infarction volume were measured 24 h after reperfusion, and mitochondrial ultrastructure was observed under an electron microscope. Mitochondria were separated by gradient centrifugation and detected for reactive oxygen species(ROS), malondialdehyde(MDA), respiratory chain enzyme complex Ⅰ-Ⅳ activity, mitochondrial permeability transition pore(mPTP), mitochondrial membrane potential(MMP), and mitochondrial adenosine triphosphate(ATP) content. Enzyme-linked immunosorbent assay(ELISA) was used to detect the expression of cytochrome C(Cyt C) in different sites. TUNEL staining was used to observe the apoptosis of brain tissues in each group, and Western blot was used to detect the expression of B-cell lymphoma 2(Bcl-2) and Bcl-2-associated X protein(Bax) in brain tissues. The experimental results revealed that compared with the Sham group, the MCAO/R group showed evident neurological dysfunction and cerebral infarction(P<0.01) accompanied by mitochondrial swelling and crest disappearance, increased ROS level and MDA content, inhibited activity of respiratory chain enzyme complex Ⅰ-Ⅳ, abnormal opening of mPTP, and reduced MMP and mitochondrial ATP(P<0.01). Besides, many Cyt C was released from mitochondria into the cytoplasm to induce apoptosis(P<0.01). The ethanol extract of GE positively affected the behavior deficit and mitochondrial health of MCAO/R rats, with the manifestations of decreased production of ROS and MDA(P<0.01), potentiated activity of mitochondrial respiratory chain enzyme complex Ⅰ-Ⅳ, and restored the level of mPTP(P<0.05). In addition, the ethanol extract of GE reduced the loss of MMP and the escape of Cyt C to the cytoplasm(P<0.05), reduced the number of TUNEL positive cells(P<0.01) accompanied by the decrease in Bax and the up-regulation of Bcl-2(P<0.01), and increased the level of ATP(P<0.01). In conclusion, GE ethanol extract has a protective effect against MCAO/R-induced mitochondrial dysfunction, and the mechanism may be related to the regulation of oxidative stress, maintenance of functional morphology of mitochondria, and inhibition of endogenous apoptosis.
Yuan Luo, Pu Chen, Li-Ping Yang, Xiao-Hua Duan

1775 related Products with: [Effect of ethanol extract of Gastrodiae Rhizoma on mitochondrial dysfunction in cerebral ischemia-reperfusion injury].

1 mg1 mg96T 5 G100ug400 ug400 ug96 wells (1 kit)1 Set

Related Pathways

paperclip

#36469660   2022/12/05 To Up

Iron deficiency aggravates DMNQ-induced cytotoxicity via redox cycling in kidney-derived cells.

Iron, an essential element for most of living organisms, participates in many biological functions. Since iron is redox-active transition metal, it is known that excessive levels stimulate the formation of reactive oxygen species (ROS) and exacerbate cytotoxicity. An iron deficiency is the most common nutritional deficiency disorder in the world (about 30% of the population) and is more common than cases of iron overload. However, the effects of iron deficiency on ROS-induced cytotoxicity and the maintenance of intracellular redox homeostasis are not fully understood. The present study reports on an evaluation of the effects of iron deficiency on cytotoxicity induced by several ROS generators. In contrast to hydrogen peroxide and erastin, the cytotoxicity of 2,3-dimethoxy-1,4-naphthoquinone (DMNQ), a redox cycling agent that induces intracellular superoxide anion formation, was exacerbated by iron deficiency. Cytochrome b reductase was identified as a candidate enzyme responsible for the redox cycling of DMNQ under conditions of iron depletion. Moreover, the DMNQ-induced intracellular accumulation of ROS and a decrease in NADH/NAD ratios were enhanced by an iron deficiency. These negative changes were found to be ameliorated by overexpressing NAD(P)H:quinone oxidoreductase 1 (NQO1) in kidney-derived cells that originally showed a very low expression of NQO1. These results indicate that NQO1 plays a protective role against redox cycling quinone-mediated cytotoxicity under iron-depleted conditions. This is because NQO1 generates less-toxic hydroquinones via the two-electron reduction of quinones. The collective findings reported herein demonstrate that not only an iron overload but also an iron deficiency exacerbates ROS-mediated cytotoxicity.
Daisaku Yoshihara, Noriko Fujiwara, Hironobu Eguchi, Haruhiko Sakiyama, Keiichiro Suzuki

2460 related Products with: Iron deficiency aggravates DMNQ-induced cytotoxicity via redox cycling in kidney-derived cells.

100ul1x10e7 cells100 ul4 x 96-well plate400 ug96T100 ug/vial1.00 flask96 tests

Related Pathways

paperclip

#36469580   // To Up

Screening Method for the Identification of Compounds That Activate Pregnane X Receptor.

The pregnane X receptor (PXR) is a nuclear receptor found mainly in the liver and intestine, whose main function is to regulate the expression of drug-metabolizing enzymes and transporters. Recently, it has been noted that PXR plays critical roles in energy homeostasis, immune response, and cancer. Therefore, identifying chemicals or compounds that can modulate PXR is of great interest, as these can result in downstream toxicity or, alternatively, may have therapeutic potential. Testing one compound at a time for PXR activity would be inefficient and take thousands of hours for large compound libraries. Here, we describe a high-throughput screening method that encompasses plating and treating HepG2-CYP3A4-hPXR cells in a 1536-well plate, as well as reading and interpreting assay (e.g., luciferase reporter gene activity) endpoints. These cells are stably transfected with a human PXR expression vector and CYP3A4-promoter-driven luciferase reporter vector, allowing the identification of compounds that activate PXR through cytochrome 450 3A4. We also describe how to analyze the data from each assay and explain follow-up steps, namely pharmacological characterization and quantitative polymerase chain reaction (qPCR) assays, which can be performed to confirm results from the original screen. These methods can be used to identify and confirm hPXR activators after completion of a compound screening. Published 2022. This article is a U.S. Government work and is in the public domain in the USA. Current Protocols published by Wiley Periodicals LLC. Basic Protocol 1: Establishment of a high-throughput assay to identify hPXR activators Basic Protocol 2: Quantitative high-throughput screening a compound library to classify hPXR activators Basic Protocol 3: Performing pharmacological characterization and qPCR assays to confirm hPXR activators.
Caitlin Lynch, Srilatha Sakamuru, Menghang Xia

2368 related Products with: Screening Method for the Identification of Compounds That Activate Pregnane X Receptor.

400Tests100Tests100 ug/vial200ul10 mg100.00 ug100 1 g50μl 500 ml 100.00 ul100ug

Related Pathways

paperclip

#36469275   2022/12/05 To Up

Bioreduction of Cr(VI) using a propane-based membrane biofilm reactor.

The strong physiological toxicity of Cr(VI) makes it widely concerned in wastewater treatment. At present, the simplest and harmless method for treating Cr(VI) is known to be biologically reducing it to Cr(III), making it precipitate as Cr(OH)(s), and then removing Cr(III) by solid separation technology. Studies have shown that Cr(VI) reduction bacteria can use CH and H as electron donors to reduce Cr(VI). Based on this, in this study, CH was used as the only electron donor to investigate the potential of CH matrix membrane bioreactor in the Cr(VI) wastewater treatment. The experiment was divided into three stages, each of which run stably for at least 30 days, and the whole process run for 120 days in total. The experiment is divided into three stages, each stage runs stably for at least 30 days, for a total of 120 days. With the increase of the Cr(VI) load, the removal rate gradually decreased. In stage 3, when Cr(VI) concentration was 2.0 mg·L, the removal rate was reduced from 90% in the first stage to 75%. According to X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS) analysis, it is known that Cr(III) is the main product during this process and it is adsorbed on the biofilm as Cr(OH) precipitate. During the experiment, the amount of extracellular polymeric substance (EPS) produced by microorganisms increased initially and then decreased, and the amount of polysaccharides (PS) was always more than protein (PN). By analyzing the microbial community structure after inoculating sludge and adding Cr(VI), Nocardia and Rhodococcus dominate the biofilm samples. Chromate reductase, cytochrome c, nitrate reductase, and other functional genes related to chromate reductase increased gradually during the experiment.
Chunshuang Liu, Luyao Zhang, Haitong Yu, Huijuan Zhang, Hongzhe Niu, Jianing Gai

1770 related Products with: Bioreduction of Cr(VI) using a propane-based membrane biofilm reactor.

2 Sample Kit10 plates 6 ml Ready-to-use 250 4 Membranes/Box2 Membrane supply4 Membranes/Box2 Membrane supply2 Membrane supply4 Membranes/Box

Related Pathways