Only in Titles

Search results for: Mouse Anti-Human CD3, Biotinylated

paperclip

#17722550   // To Up

Quantum dot-doped silica nanoparticles as probes for targeting of T-lymphocytes.

To enhance diagnostic or therapeutic efficacy, novel nanomaterials must be engineered to function in biologically relevant environments, be visible by conventional fluorescent microscopy, and have multivalent loading capacity for easy detection or effective drug delivery. Here we report the fabrication of silica nanoparticles doped with quantum dots and superficially functionalized with amino and phosphonate groups. The amino groups were acylated with a water-soluble biotin-labeling reagent. The biotinylated nanoparticles were subsequently decorated with neutravidin by exploiting the strong affinity between neutravidin and biotin. The resultant neutravidin-decorated fluorescent silica nanoparticles stably dispersed under physiological conditions, were visible by conventional optical and confocal fluorescent microscopy, and could be further functionalized with macromolecules, nucleic acids, and polymers. We also coated the surface of the nanoparticles with biotinylated mouse anti-human CD3 (alphaCD3). The resultant fluorescent nanoassembly was taken up by Jurkat T cells through receptor-mediated endocytosis and was partially released to lysosomes. Thus, quantum dot-doped silica nanoparticles decorated with neutravidin represent a potentially excellent scaffold for constructing specific intracellular nanoprobes and transporters.
Massimo Bottini, Federica D'Annibale, Andrea Magrini, Fabio Cerignoli, Yutaka Arimura, Marcia I Dawson, Enrico Bergamaschi, Nicola Rosato, Antonio Bergamaschi, Tomas Mustelin

2938 related Products with: Quantum dot-doped silica nanoparticles as probes for targeting of T-lymphocytes.

100 assays96 Tests50 assays100Tests1,000 tests100 testsFor 2 miRNA probes, each 100 assays 500 ml 200 assays

Related Pathways