Only in Titles

Search results for: includes 10 x reaction buffer with MgCl2

paperclip

#38143087   2023/12/22 To Up

Potent immunogenicity and neutralization of recombinant adeno-associated virus expressing the glycoprotein of severe fever with thrombocytopenia virus.

Severe fever with thrombocytopenia syndrome (SFTS) is an infectious disease caused by a tick-borne virus called severe fever with thrombocytopenia syndrome virus (SFTSV). In recent years, human infections through contact with ticks and through contact with the bodily fluids of infected dogs and cats have been reported; however, no vaccine is currently available. SFTSV has two glycoproteins (Gn and Gc) on its envelope, which are vaccine-target antigens involved in immunogenicity. In the present study, we constructed novel SFTS vaccine candidates using an adeno-associated virus (AAV) vector to transport the SFTSV glycoprotein genome. AAV vectors are widely used in gene therapy and their safety has been confirmed in clinical trials. Recently, AAV vectors have been used to develop influenza and SARS-CoV-2 vaccines. Two types of vaccines (AAV9-SFTSV Gn and AAV9-SFTSV Gc) carrying SFTSV Gn and Gc genes were produced. The expression of Gn and Gc proteins in HEK293T cells was confirmed by infection with vaccines. These vaccines were inoculated into mice, and the collected sera produced anti-SFTS antibodies. Furthermore, sera from AAV9-SFTSV Gn infected mice showed a potent neutralizing ability, similar to previously reported SFTS vaccine candidates that protected animals from SFTSV infection. These findings suggest that this vaccine is a promising candidate for a new SFTS vaccine.
Toshiaki Shimoyama, Mami Oba, Hitoshi Takemae, Tsutomu Omatsu, Hideki Tani, Tetsuya Mizutani

1756 related Products with: Potent immunogenicity and neutralization of recombinant adeno-associated virus expressing the glycoprotein of severe fever with thrombocytopenia virus.

100 100 µg10 50ug5100 1000100ug Lyophilized100ug1000100 ug/vial5

Related Pathways

paperclip

#25706731   // To Up

[Development of a real-time polymerase chain reaction method for the identification of Candida species].

Candida species are one of the major causes of nosocomial infections and are the fourth most common agent involved in bloodstream infections. The impact of non-albicans Candida species is increasing, however C.albicans is still the most common species. Since the antifungal susceptibility pattern among Candida spp. may be different, rapid diagnosis and identification of non-albicans Candida spp. are important for the determination of antifungal agents that will be used for treatment. The aim of the study was to describe a real-time polymerase chain reaction (Rt-PCR) assay that rapidly detects, identifies and quantitates Candida species from blood culture samples. A total of 50 consecutive positive blood culture bottles (BACTEC, Beckton Dickinson, USA) identified at our laboratory between June-November 2013, were included in the study. Reference strains of Candida spp. (C.albicans ATCC 10231, C.glabrata ATCC 90030, C.tropicalis ATCC 1021, C.krusei ATCC 6258, C.parapsilosis ATCC 22019 and C. dubliniensis CD36) grown on Sabouraud dextrose agar were used for quality control. BACTEC bottles that were positive for Escherichia coli, Pseudomonas aeruginosa and Staphylococcus aureus were also studied to search the cross-reactivity. A commercial kit (Zymo Research, USA) was used for DNA extraction. Real-time PCR was performed on LightCycler 480 (Roche, Germany) with primers and probes specific for 18S rRNA of Candida species. Twenty microlitres of the reaction mix contained 2 μl of extracted DNA, 2 μl of LightCycler Fast Start DNA Master Probe (Roche Diagnostics, Germany), 2 μl of MgCl(2) (5 mmol), 2 μl of 10x PCR buffer (Roche Diagnostics, Germany), 0.5 μl of each primer (0.01 nmol/μl) and 1 μl of each probe (0.1 μmol/μl) (TibMolBiol, Germany). Amplification was performed using the following conditions; 95°C for 10 mins and 50 cycles of denaturation at 95°C for 10 secs, annealing at 62°C for 10 secs and polymerisation at 72°C for 20 secs. A melting curve was created by cooling the producs at 50°C for 30 secs and then heating to 80°C at a rate of 0.1°C/sec measuring of the fluorescence simultaneously. For the quantitation of fungal DNA according to the standard curve, serial dilutions of C.albicans ATCC 10231 DNA from 3 x 10(5) to 3 x 10(2) ng/μl were used. All of the strains were also identified by conventional methods and sequence analysis in order to compare the results obtained by Rt-PCR. In our study, all patient and standard samples could be amplified, identified and quantitated by this developed Rt-PCR method. A total of 50 strains, of them 26 were C.parapsilosis, 15 were C.glabrata, 6 were C.albicans, and 3 were C.tropicalis have been detected and identified among patient samples. The results were completely concordant with the sequencing and conventional methods, so the sensitivity and specificity of this method were estimated as 100 percent. In conclusion, it was novel Rt-PCR developed and evaluated in this study is considered as a rapid, accurate, reproducible, sensitive and specific method for the detection, identification and quantitation of commonly observed Candida spp. strains.
Harun Ağca, Burcu Dalyan Cilo, Gülşah Ece Özmerdiven, Sezcan Sağlam, Beyza Ener

1564 related Products with: [Development of a real-time polymerase chain reaction method for the identification of Candida species].

25100ug25 100ul0.1 ml25 µg252550 ug 0.25 mg100ug250 ml

Related Pathways

paperclip

#12495017   // To Up

Modified concentration method for the detection of enteric viruses on fruits and vegetables by reverse transcriptase-polymerase chain reaction or cell culture.

Fruits and vegetables may act as a vehicle of human enteric virus if they are irrigated with sewage-contaminated water or prepared by infected food handlers. An elution-concentration method was modified to efficiently detect, by reverse transcriptase-polymerase chain reaction (RT-PCR) or by cell culture, contamination by poliovirus, hepatitis A virus (HAV), and Norwalk-like virus (NLV) of various fresh and frozen berries and fresh vegetables. The protocol included washing the fruit or vegetable surface with 100 mM Tris-HCl, 50 mM glycine, and 3% beef extract, pH 9.5 buffer, which favors viral elution from acid-releasing berries, supplemented with 50 mM MgCl2 to reduce the decrease in viral infectivity during the process. The viral concentration method was based on polyethylene glycol precipitation. Copurified RT-PCR inhibitors and cytotoxic compounds were removed from viral concentrates by chloroform-butanol extraction. Viruses from 100 g of vegetal products could be recovered in volumes of 3 to 5 ml. Viral RNAs were isolated by a spin column method before molecular detection or concentrates were filtered (0.22-microm porosity) and inoculated on cell culture for infectious virus detection. About 15% of infectious poliovirus and 20% of infectious HAV were recovered from frozen raspberry surfaces. The percentage of viral RNA recovery was estimated by RT-PCR to be about 13% for NLV, 17% for HAV, and 45 to 100% for poliovirus. By this method, poliovirus and HAV RNA were detected on products inoculated with a titer of about 5 x 10(1) 50% tissue culture infectious dose per 100 g. NLV RNA was detected at an initial inoculum of 1.2 x 10(3) RT-PCR amplifiable units. This method would be useful for the viral analysis of fruits or vegetables during an epidemiological investigation of foodborne diseases.
Eric Dubois, Cécilia Agier, Ousmane Traoré, Catherine Hennechart, Ghislaine Merle, Catherine Crucière, Henri Laveran

2666 related Products with: Modified concentration method for the detection of enteric viruses on fruits and vegetables by reverse transcriptase-polymerase chain reaction or cell culture.

100Tests25 reactions100tests25 reactions1 kit10x72 mg100tests 5 ltcase1 kit

Related Pathways

paperclip

#12223297   // To Up

Detection of Escherichia coli O157:H7 using immunomagnetic separation and absorbance measurement.

An assay system for detection of Escherichia coli O157:H7 was developed based on immunomagnetic separation of the target pathogen from samples and absorbance measurement of p-nitrophenol at 400 nm from p-nitrophenyl phosphate hydrolysis by alkaline phosphatase (EC 3.1.3.1) on the "sandwich" structure complexes (antibodies coated onto micromagnetic beads--E. coli O157:H7-antibodies conjugated with the enzyme) formed on the microbead surface. The effects of immunoreaction time, phosphate buffer concentration, pH and temperature on the immunomagnetic separation of E. coli O157:H7 from samples were determined and the conditions used for the separation were 1-h reaction time, 1.0 x 10(-2) M PBS, pH 8.0 and 33 degrees C in this system. The effects of MgCl(2) concentration, Tris buffer concentration, pH and temperature on the activity of alkaline phosphatase conjugated on the immuno-"sandwich" structure complexes were investigated after immunomagnetic separation of the target pathogen and the conditions used for the enzymatic amplification were 1.0 x 10(-4) M MgCl(2), 1.0 M Tris buffer, pH 8.0, 28 degrees C and 30-min reaction time during the assay. The selectivity of the system was examined and no interference from the other pathogens including Salmonella typhimurium, Campylobacter jejuni and Listeria monocytogenes was observed. Its working range was from 3.2 x 10(2) to 3.2 x 10(4) CFU/ml, and the relative standard deviation was 2.5-9.9%. The total detection time was less than 2 h.
Yongcheng Liu, Yanbin Li

2705 related Products with: Detection of Escherichia coli O157:H7 using immunomagnetic separation and absorbance measurement.

100 ug100 100 ML1 mL100 200 100 200 200 200

Related Pathways

paperclip

#11721916   // To Up

An antibody-immobilized capillary column as a bioseparator/bioreactor for detection of Escherichia coil O157:H7 with absorbance measurement.

A capillary-column-based bioseparator/bioreactor was developed for detection of Escherichia coli O157:H7 by chemically immobilizing anti-E. coli O157:H7 antibodies onto the inner wall of the column, forming the "sandwich" immunocomplexes (immobilized antibody-E. coli O157: H7-enzyme-labeled antibody) after the sample and the enzyme-labeled antibody passed through the column and detecting the absorbance of the product in the bioreactor with an optical detector. The effects of the blocking agent, flow rate of samples and substrates, buffer, MgCl2, and pH on the detection of E. coli O157:H7 were investigated. The parameters, 2% BSA in 1.0 x 10-2 M, pH 7.4, PBS as the blocking agent, 0.5 mL/h as the sample flow rate, 1.0 x 10(-2) M MgCl2, and 2.0 x 10(-4) M p-nitrophenyl phosphate in 1.0 M, pH 9.0 Tris buffer as the substrate for the enzymatic reaction, and 1.0 mL/h as the substrate flow rate, were used in the bioseparator/bioreactor system for detection of E. coli O157:H7. The selectivity of the system was checked, and other pathogens, including Salmonella typhimurium, Campylobacterjejuni, and Listeria monocytogenes, had no interference with the detection of E. coli O157:H7. Its working range was from 5.0 x 10(2) to 5.0 x 10(6) cfu/mL, and the total assay time was < 1.5 h without any enrichment. The relative standard deviation was approximately 2.0-7.3%.
Y Liu, Y Li

2473 related Products with: An antibody-immobilized capillary column as a bioseparator/bioreactor for detection of Escherichia coil O157:H7 with absorbance measurement.

100ug Lyophilized100ug Lyophilized100ug Lyophilized100ug Lyophilized0.2 mg16 Arrays/Slide200ul

Related Pathways

paperclip

#3351916   // To Up

Pressure-induced dissociation of brome mosaic virus.

Brome mosaic virus reversibly dissociates into subunits in the pressure range of 600 x 10(5) to 1600 x 10(5) Pa, as demonstrated by studies of the spectral shift of intrinsic fluorescence, of filtration chromatography and of electron microscopy of samples fixed under pressure. Smaller shell particles (T = 1) were detected as intermediates in the dissociation pathway. Dissociation was facilitated by decreasing the concentration, as expected for a multimolecular reaction. The estimated change in volume upon dissociation into 90 dimer particles was -2960 ml/mol. Large increases in the intrinsic fluorescence intensity and in the binding of bis(8-anilinonaphthalene-1-sulfonate) occurred at pressures higher than 1400 x 10(5) Pa. The pressure-dependence profile of the different spectral properties shifted to lower pressures when 5 mM-MgCl2 was included in the buffer or when the pH was raised from 5.5 to 5.9. When the pressure was progressively increased above 1400 x 10(5) Pa, a value that led to 75% dissociation, the capsid subunits lost the ability to reassociate into regular shells and only amorphous aggregates were formed after decompression, as evidenced by both electron microscopy and gel filtration chromatography. The formation of these random aggregates of brome mosaic virus can be explained by a conformational drift of the separated subunits, similar in nature to that found in simpler oligomeric proteins.
J L Silva, G Weber

2198 related Products with: Pressure-induced dissociation of brome mosaic virus.

384 Tests 2ug 192 Tests 96 Tests 384 Tests 100 µg 192 Tests 5ug 96 Tests 100ug/vial500 100ug Lyophilized

Related Pathways