Only in Titles

Search results for: GPC3

paperclip

#35961708   2022/02/18 To Up

Immunotherapy for hepatobiliary cancers: Emerging targets and translational advances.

Over the past several decades, primary liver cancer (PLC), mostly hepatocellular carcinoma (HCC) and intrahepatic cholangiocarcinoma (iCCA), has become the focus of rising concern mainly due to the increasing rates of incidence and high global mortality. Immunotherapy, as an emerging treatment approach, represents an effective and promising option against PLC. However, the selection of immunotherapeutic targets while considering tumor heterogeneity and immunosuppressive tumor microenvironment is a major challenge. The purpose of this review is to summarize and present the emerging immunotherapeutic targets for HCC and iCCA and to evaluate their translation advances in currently ongoing clinical trials. To better provide a framework for the liver cancer target selection, this chapter will highlight cell surface antigens expressed in both tumor cells and immune cells. Particular focus will be on the development, biology and function of Glypican-3 (GPC3) and Mesothelin (MSLN) in the cancer progress of HCC and iCCA, respectively. By doing so, we will explore the prospects and applications of various immunotherapeutic strategies such as vaccines, monoclonal antibodies, immunotoxins, antibody-drug conjugates (ADCs) and chimeric antigen receptors (CARs) T cells that have been developed targeting GPC3 and MSLN.
Dan Li, Shaoli Lin, Jessica Hong, Mitchell Ho

2145 related Products with: Immunotherapy for hepatobiliary cancers: Emerging targets and translational advances.

500 ml 50 mg250 mg0.1 ml25 mg100ul5 mg2.5 mg100ug96T100ul

Related Pathways

paperclip

#35946078   2022/08/09 To Up

Frequently Expressed Glypican-3 As A Promising Novel Therapeutic Target for Osteosarcomas.

Osteosarcoma (OS) is the most common bone malignancy without a reliable therapeutic target. Glypican-3 (GPC3) mutation and upregulation have been detected in multi-drug resistant OS, and anti-GPC3 immunotherapy can effectively suppress the growth of organoids. Further profiling of GPC3 mutations and expression patterns in OS is of clinical significance. To address these issues, fresh OS specimens were collected from 24 patients for cancer-targeted next-generation sequencing (NGS) and three-dimensional patient-derived organoid (PDO) culture. A tumor microarray was prepared using 37 archived OS specimens. Immunohistochemical (IHC) staining was performed on OS specimens and microarrays to profile GPC3 and CD133 expression as well as intratumoral distribution patterns. RT-PCR was conducted to semi-quantify GPC3 and CD133 expression levels in the OS tissues. Anti-GPC3 immunotherapy was performed on OS organoids with or without GPC3 expression and its efficacy was analyzed using multiple experimental approaches. No OS cases with GPC3 mutations were found, except for the positive control (OS-08). IHC staining revealed GPC3 expression in 73.77% (45/61) of OSs in weak (+; 29/45), moderate (++; 8/45), and strong (+++; 8/45) immunolabeling densities. The intratumoral distribution of GPC3-positive cells was variable in the focal (+; 10-30%; 8/45), partial (++; 31-70%; 22/45), and the most positive patterns (+++; > 71%; 15/45), which coincided with CD133 immunolabeling (P = 9.89×10 ). The anti-GPC3 antibody efficiently inhibits Wnt/β-catenin signaling and induces apoptosis in GPC3-positive PDOs and PDXs, as opposed to GPC3-negative PDOs and PDXs. The high frequency of GPC3 and CD133 co-expression and the effectiveness of anti-wildtype GPC3-ab therapy in GPC3-positive OS models suggest that GPC3 is a novel prognostic parameter and a promising therapeutic target for osteosarcoma.
Jun-Hua Nie, Tao Yang, Hong Li, Sheng Li, Ting-Ting Li, Hai-Shan Ye, Meng-Di Lu, Xiao Chu, Guo-Qing Zhong, Jie-Long Zhou, Mo-Li Wu, Yu Zhang, Jia Liu

1983 related Products with: Frequently Expressed Glypican-3 As A Promising Novel Therapeutic Target for Osteosarcomas.