Only in Titles

Search results for: Negative Gel Stain MS Kit Negative Gel Stain MS Kit

paperclip

#27727304   2016/10/11 To Up

Selection of an Appropriate Protein Extraction Method to Study the Phosphoproteome of Maize Photosynthetic Tissue.

Often plant tissues are recalcitrant and, due to that, methods relying on protein precipitation, such as TCA/acetone precipitation and phenol extraction, are usually the methods of choice for protein extraction in plant proteomic studies. However, the addition of precipitation steps to protein extraction methods may negatively impact protein recovery, due to problems associated with protein re-solubilization. Moreover, we show that when working with non-recalcitrant plant tissues, such as young maize leaves, protein extraction methods with precipitation steps compromise the maintenance of some labile post-translational modifications (PTMs), such as phosphorylation. Therefore, a critical issue when studying PTMs in plant proteins is to ensure that the protein extraction method is the most appropriate, both at qualitative and quantitative levels. In this work, we compared five methods for protein extraction of the C4-photosynthesis related proteins, in the tip of fully expanded third-leaves. These included: TCA/Acetone Precipitation; Phenol Extraction; TCA/Acetone Precipitation followed by Phenol Extraction; direct extraction in Lysis Buffer (a urea-based buffer); and direct extraction in Lysis Buffer followed by Cleanup with a commercial kit. Protein extraction in Lysis Buffer performed better in comparison to the other methods. It gave one of the highest protein yields, good coverage of the extracted proteome and phosphoproteome, high reproducibility, and little protein degradation. This was also the easiest and fastest method, warranting minimal sample handling. We also show that this method is adequate for the successful extraction of key enzymes of the C4-photosynthetic metabolism, such as PEPC, PPDK, PEPCK, and NADP-ME. This was confirmed by MALDI-TOF/TOF MS analysis of excised spots of 2DE analyses of the extracted protein pools. Staining for phosphorylated proteins in 2DE revealed the presence of several phosphorylated isoforms of PEPC, PPDK, and PEPCK.
Inês M Luís, Bruno M Alexandre, M Margarida Oliveira, Isabel A Abreu

2930 related Products with: Selection of an Appropriate Protein Extraction Method to Study the Phosphoproteome of Maize Photosynthetic Tissue.

100ul0.5mg1 mg100 1 mg

Related Pathways

paperclip

#22633222   2012/05/07 To Up

Proteomic analysis of plasma from Holstein cows testing positive for Mycobacterium avium subsp. paratuberculosis (MAP).

Johne's disease (JD) is a widespread and economically important chronic inflammatory disease of the small intestine of ruminants caused by Mycobacterium avium subsp. paratuberculosis (MAP). Although there are several techniques available for diagnosis of JD, their sensitivity is questionable. New proteome profiling methods, such as serum/plasma protein fingerprinting by 2-Dimensional Fluorescence Difference Gel Electrophoresis (2D-DIGE), may therefore be useful for identifying novel protein biomarkers of MAP infection. In this study, plasma samples were collected from 380 Holstein cows and screened for the presence of MAP infection using the M.pt. Johne's antibody Kit (IDEXX). Five negative (MAP-), and 5 strongly positive (MAP+) cows were selected for proteomic analysis. Highly abundant proteins were depleted from the plasma samples using the ProteoMiner technology (Bio-Rad) to enhance the resolution of low abundance proteins. Plasma samples from MAP-, MAP+, and a pooled internal control were labelled with different fluorescent dyes and separated based on their isoelectrical point (IP) and then their molecular weight. Gel images of the fluorescent plasma protein maps were acquired using a Typhoon scanner and analyzed using the DeCyder software. Proteins that were differentially expressed were excised from the gels, trypsin digested, and subjected to MS/MS analysis for identification. Six proteins were identified as being up-regulated at least 2-fold in MAP+ cows including: transferrin, gelsolin isoforms α & β (actin binding protein - ABP), complement subcomponent C1r, complement component C3, amine oxidase - copper containing 3 (AOC3), and coagulation factor II (thrombin) (p<0.05). Two proteins that were down-regulated approximately 2-fold in the MAP+ cows included coagulation factor XIII -B polypeptide (COAFXIII), and fibrinogen γ chain (FGG) and its precursor.
Qiumei You, Chris P Verschoor, Sameer D Pant, Joseph Macri, Gordon M Kirby, Niel A Karrow

1452 related Products with: Proteomic analysis of plasma from Holstein cows testing positive for Mycobacterium avium subsp. paratuberculosis (MAP).

96T200 100ug Lyophilized 1L 1 kit(s) 1mg

Related Pathways

paperclip

#30764318   // To Up

First Report of Tobacco ringspot virus in Blackberry (Rubus sp.) in Alabama.

In 2006, primocane stunted growth and crumbly berry development were observed on 4-year-old Kiowa and Apache blackberry cultivars grown at the Chilton Research and Extension Center, Clanton, AL. Samples from affected plants were tested for virus infection by ELISA kits (Agdia, Inc., Elkhart, IN) specific to each of 14 different viruses. Most samples tested positive for Tobacco ringspot virus (TRSV). TRSV was detected in blackberry samples from North Carolina and South Carolina (2). Bray et al. (1) studied the incidence of viruses in blackberry nursery stock in the United States and reported that 9% of the tested samples contained TRSV. Thus, a survey was conducted for TRSV incidence among commercial blackberry stands in eight counties in Alabama during July 2007. Blackberry plants were observed to express virus-like symptoms including chlorotic spots on leaves, leaf veinal chlorosis, stunting, and combinations thereof. Fruit-bearing plants sometimes had crumbly fruit symptoms characteristic of virus infection. Leaf samples that were collected from symptomatic and nonsymptomatic plants representing 14 cultivars were tested by TRSV ELISA (Agdia, Inc.). Of 180 blackberry samples, 68 tested positive for TRSV. Positive ELISA reactions for TRSV were on average 28 times greater than the reactions of known negative control samples considered negative for TRSV. Blackberry plants shown to be infected with TRSV during the 2007 survey were tested in July 2008 in an effort to confirm the presence of TRSV. Fifty-four percent of the samples tested positive by ELISA with the average positive ELISA value being 21 times higher than the average negative ELISA value for known negative control samples. To further confirm the occurrence of TRSV in Alabama-grown blackberry plants, leaf samples were tested by reverse transcription (RT)-PCR to amplify a 329-bp fragment of the viral coat protein gene (TRSV RNA 2 sequence accession no. NC_005096; primers TRSCP-F (5'-TCTGGCACTATAAGCGGAAG-3') and TRSCP-R (5'-GAAAACATGGGAGGATGCAC-3'). A single band of the anticipated size was amplified (analyzed by agarose gel electorphoresis and visualized by ethidium bromide staining) from RNA samples extracted with a RNeasy Mini kit (Qiagen, Valencia, CA) from blackberry samples that tested positive for TRSV by ELISA and a known positive control. No amplified product resulted from a blackberry sample that tested negative for TRSV by ELISA. These results illustrate and confirm the presence of TRSV in blackberry leaf tissues grown in Alabama. To our knowledge, this is the first report of TRSV infection of blackberry plants in Alabama. References: (1) M. M. Bray et al. HortScience 40:874, 2005. (2) T. L. Guzmán-Baeny. Incidence, distribution, and symptom description of viruses in cultivated blackberry (Rubus subgenus Eubatus) in the southeastern United States. M.S. thesis, North Carolina State University, Raleigh, 2003.
E Coneva, J F Murphy, R Boozer, N Velásquez

2879 related Products with: First Report of Tobacco ringspot virus in Blackberry (Rubus sp.) in Alabama.

25 10050ug200 100 2510 10 50 1 mL1 mg1

Related Pathways

paperclip

#14997504   // To Up

Protein profiling and identification of modulators regulated by the E7 oncogene in the C33A cell line by proteomics and genomics.

Human papillomaviruses (HPVs) have been recognized as the primary cause of cervical cancer. HPV 16 E7 binds to tumor suppressor retinoblastoma protein, and interferes with its function, causing release of the transcription factor E2F, which influences expression of cell cycle-related genes. This study was performed to identify the genes and proteins modulated by the HPV E7 oncogene. An HPV-negative cervical cancer cell line (C33A) was prepared to establish a stable cell line expressing E7. In order to analyze the target molecules modulated by E7 expression, we used two approaches: matrix-assisted laser desorption/ionization-time of flight mass spectrometry (MALDI-TOF MS) and DNA microarrays. Forty-seven spots were identified in C33A/E7 by two-dimensional electrophoresis and MALDI/TOF MS. Protein disulfide isomerase A3, integrase interactor 1 protein, growth inhibitory protein, glutathione S-transferase P, and vav proto-oncogene were down-regulated, whereas heat shock 60 kDa protein 1, Ku70 binding protein, alpha enolase, 26S proteasome subunit were up-regulated. A genomic approach using a microarray kit showed that IL-12R beta 1, cytochrome c, and tumor necrosis factor receptor II were induced by the E7 oncogene. These results suggest that E7 can evade immune surveillance by suppressing or inducing these cell signaling factors, cell cycle regulators, and chaperones.
Kyung-Ae Lee, Jung-Hyun Shim, Chang Won Kho, Sung Goo Park, Byoung Chul Park, Jae-Wha Kim, Jong-Seok Lim, Yong-Kyung Choe, Sang-Gi Paik, Do-Young Yoon

1056 related Products with: Protein profiling and identification of modulators regulated by the E7 oncogene in the C33A cell line by proteomics and genomics.

100ug Lyophilized100 μg100ug Lyophilized1 mL100ug Lyophilized1 mL2100ug Lyophilized100ug Lyophilized

Related Pathways