Only in Titles

Search results for: TRF42

paperclip

#26628367   2015/11/25 To Up

Human Telomerase RNA Processing and Quality Control.

The non-coding RNA subunit of telomerase provides the template for telomerase activity. In diverse fungi, 3' end processing of telomerase RNA involves a single cleavage by the spliceosome. Here, we examine how human telomerase RNA (hTR) primary transcripts are processed into the mature form of precisely 451 nt. We find that the splicing inhibitor isoginkgetin mimics the effects of RNA exosome inhibition and causes accumulation of long hTR transcripts. Depletion of exosome components and accessory factors reveals functions for the cap binding complex (CBC) and the nuclear exosome targeting (NEXT) complex in hTR turnover. Whereas longer transcripts are predominantly degraded, shorter precursor RNAs are oligo-adenylated by TRF4-2 and either processed by poly(A)-specific ribonuclease (PARN) or degraded by the exosome. Our results reveal that hTR biogenesis involves a kinetic competition between RNA processing and degradation and suggest treatment options for telomerase insufficiency disorders.
Chi-Kang Tseng, Hui-Fang Wang, Allison M Burns, Morgan R Schroeder, Martina Gaspari, Peter Baumann

2783 related Products with: Human Telomerase RNA Processing and Quality Control.

1000 2 mL100 μg100 μg0.1 mg1.00 mg1 ml0.1ml (1mg/ml)100 μg200 1. Set100 ug

Related Pathways

paperclip

#23166521   2012/11/15 To Up

Polyadenylation-dependent control of long noncoding RNA expression by the poly(A)-binding protein nuclear 1.

The poly(A)-binding protein nuclear 1 (PABPN1) is a ubiquitously expressed protein that is thought to function during mRNA poly(A) tail synthesis in the nucleus. Despite the predicted role of PABPN1 in mRNA polyadenylation, little is known about the impact of PABPN1 deficiency on human gene expression. Specifically, it remains unclear whether PABPN1 is required for general mRNA expression or for the regulation of specific transcripts. Using RNA sequencing (RNA-seq), we show here that the large majority of protein-coding genes express normal levels of mRNA in PABPN1-deficient cells, arguing that PABPN1 may not be required for the bulk of mRNA expression. Unexpectedly, and contrary to the view that PABPN1 functions exclusively at protein-coding genes, we identified a class of PABPN1-sensitive long noncoding RNAs (lncRNAs), the majority of which accumulated in conditions of PABPN1 deficiency. Using the spliced transcript produced from a snoRNA host gene as a model lncRNA, we show that PABPN1 promotes lncRNA turnover via a polyadenylation-dependent mechanism. PABPN1-sensitive lncRNAs are targeted by the exosome and the RNA helicase MTR4/SKIV2L2; yet, the polyadenylation activity of TRF4-2, a putative human TRAMP subunit, appears to be dispensable for PABPN1-dependent regulation. In addition to identifying a novel function for PABPN1 in lncRNA turnover, our results provide new insights into the post-transcriptional regulation of human lncRNAs.
Yves B Beaulieu, Claudia L Kleinman, Anne-Marie Landry-Voyer, Jacek Majewski, François Bachand

1698 related Products with: Polyadenylation-dependent control of long noncoding RNA expression by the poly(A)-binding protein nuclear 1.

0.1 mg100ug Lyophilized0.05 mg5 reactions100ug Lyophilized100100.00 ug100ug Lyophilized200 ug100 ug

Related Pathways

paperclip

#16773180   // To Up

Gene expression profiling of paired ovarian tumors obtained prior to and following adjuvant chemotherapy: molecular signatures of chemoresistant tumors.

Chemotherapy (CT) resistance in ovarian cancer is related to multiple factors, and assessment of these factors is necessary for the development of new drugs and therapeutic regimens. In an effort to identify such determinants, we evaluated the expression of approximately 21,000 genes using DNA microarray screening in paired tumor samples taken prior to and after CT treatment from 6 patients with predominantly advanced stage, high-grade epithelial ovarian cancer. A subset of differentially expressed genes was selected from all microarray data by initial filtering on confidence at p=0.05, followed by filtering on expression level (>or=2-fold). Using these selection criteria, we found 121 genes to be commonly up-regulated and 54 genes to be down-regulated in the post-CT tumors, compared to primary tumors. Up-regulated genes in post-CT tumors included substantial number of genes with previously known implication in mechanisms of chemoresistance (TOP2A, ETV4, ABCF2, PRDX2, COX2, COX7B, MUC1, MT3, MT2A), and tumorigenesis (SCGB2A2, S100A9, YWHAE, SFN, ATP6AP1, MGC5528, ASS, TACC3, ARHGAP4, SRA1; MGC35136, PSAP, SPTAN1, LGALS3BP, TUBA4, AMY2B, PPIA, COX1, GRB2, CTSL). Down-regulated genes in post-CT samples mostly included genes implicated in chemosensitivity (GRP, TRA1, ADPRTL1, TRF4-2), cell proliferation and cell cycle control (NGFRAP1, TPD52L1, TAX1BP1) and tumor suppression and apoptosis (SMOC2, TIMP3, AXIN1, CASP4, P53SCV). Additionally, gene clustering analysis revealed the existence of two distinct expression signatures of chemoresistant tumors, which was further confirmed by assessment of some genetic (p53 gene mutation status) and clinical parameters (CT regimens). Our data suggest that intrinsic and acquired chemoresistant phenotypes of post-CT tumors may be attributed to the combined action of different factors implicated in mechanisms of chemoresistance, tumor invasion/progression and control of cell proliferation. This type of molecular profiling could have important clinical implications in resolving chemoresistance and the development of novel treatment strategies designed to prevent its emergence.
Sylvain L'Espérance, Ion Popa, Magdalena Bachvarova, Marie Plante, Nancy Patten, Lin Wu, Bernard Têtu, Dimcho Bachvarov

2127 related Products with: Gene expression profiling of paired ovarian tumors obtained prior to and following adjuvant chemotherapy: molecular signatures of chemoresistant tumors.

5 μg300 units

Related Pathways