Only in Titles

Search results for: Tubulin

paperclip

#39246236   2024/09/06 To Up

Characterization of the C17.2 cell line as testing system for endocrine disruption-induced developmental neurotoxicity.

Hormone signaling plays an essential role during fetal life and is vital for brain development. Endocrine-disrupting chemicals can interfere with the hormonal milieu during this critical time-period, disrupting key neurodevelopmental processes. Hence, there is a need for the development of assays that evaluate developmental neurotoxicity (DNT) induced by an endocrine mode of action. Herein, we evaluated the applicability of the neural progenitor C17. 2 cell-line, as an in vitro test system to aid in the detection of endocrine disruption (ED) induced DNT. For this, C17.2 cells were exposed during 10 days of differentiation to agonists and antagonists of the thyroid hormone (Thr), glucocorticoid (Gr), retinoic acid (Rar), retinoic x (Rxr), oxysterols (Lxr), estrogen (Er), androgen (Ar), and peroxisome proliferator activated delta (Pparβ/δ) receptors, as well as to the agonist of the vitamin D (Vdr) receptor. Upon exposure and differentiation, neuronal morphology (neurite outgrowth and branching), and the percentage of neurons in culture were assessed by immunofluorescence. For this, the cells were incubated with Hoechst (nuclear staining) and stained for βIII-tubulin (neuronal marker). The C17.2 cells were responsive to the Rar, Rxr and Pparβ/δ agonists which decreased neurite outgrowth and branching. Additionally, exposure to the Gr agonist increased the number of cells differentiating into neurons, while exposure to the Rxr agonist had the opposite effect. With this approach, we have identified that the C17.2 cells are responsive to Gr, Rar, Rxr, and Pparβ/δ agonists, hence contributing to the development of test systems for hazard assessment of ED-induced DNT.
Andrea Cediel-Ulloa, Roseline Awoga, Arif Dönmez, Ximiao Yu, Anda Gliga, Kristina Attoff, Anna Forsby, Joëlle Rüegg

2939 related Products with: Characterization of the C17.2 cell line as testing system for endocrine disruption-induced developmental neurotoxicity.

10 Plates100 plates2500 assays10 plates2 x 10^6 cells96 assays2500 assays100 plates100 plates

Related Pathways

paperclip

#39245159   2024/09/06 To Up

Comparative Analysis of Fixation Techniques for Signal Detection in Avian Embryos.

The choice of fixation method significantly impacts tissue morphology and visualization of gene expression and proteins after in situ hybridization chain reaction (HCR) or immunohistochemistry (IHC), respectively. In this study, we compared the effects of paraformaldehyde (PFA) and trichloroacetic acid (TCA) fixation techniques prior to HCR and IHC on chicken embryos. Our findings underscore the importance of optimizing fixation methods for accurate visualization and subsequent interpretation of HCR and IHC results, with implications for probe and antibody validation and tissue-specific protein localization studies. We found that TCA fixation resulted in larger and more circular nuclei and neural tubes compared to PFA fixation. Additionally, TCA fixation altered the subcellular fluorescence signal intensity of various proteins, including transcription factors, cytoskeletal proteins, and cadherins. Notably, TCA fixation revealed protein signals in tissues that may be inaccessible with PFA fixation. In contrast, TCA fixation proved ineffective for mRNA visualization. These results highlight the need for optimization of fixation protocols depending on the target and model system, emphasizing the importance of methodological considerations in biological analyses.
Camilo V Echeverria, Tess A Leathers, Crystal D Rogers

1951 related Products with: Comparative Analysis of Fixation Techniques for Signal Detection in Avian Embryos.

5 G2 Pieces/Box50 mL252 Pieces/Box2 Pieces/Box2 Pieces/Box96TInhibitors500 MG

Related Pathways

paperclip

Error loading info... Pleas try again later.
paperclip

Error loading info... Pleas try again later.
paperclip

#39238251   2024/09/05 To Up

First Report of Causing A Leaf Spot Disease on in China.

Amorphophallus konjac, commonly called voodoo lily, is a cash crop widely cultivated in southwest China (Gao et al. 2022). In August 2022, leaf spot symptoms were observed in a field (1 ha) located at Fuyuan (25.67°N; 104.25°E), Yunnan, China, resulting in substantial economic losses. Brown lesions, with an incidence ranging from 20 to 40%, typically had a whitish or gray center and were surrounded by yellow halos. Microscopic observations of the spots revealed anamorphic species Cercospora chevalieri. Conidiophores were 50-150 × 4-7 μm, cylindrical, unbranched, smooth-walled, pale brown and aggregated in dense fascicles arising from a brown stroma. The conidiogenous cells were integrated, terminal or intercalary, pale brown to brown and proliferated sympodially. The conidiogenous loci were thickened and darkened, and 2-3 μm in diam. The conidia were formed singly, obclavate-cylindrical, 90-160 × 5-7 μm, with an average of 130 × 6 μm (n = 30), 6-11 septa, thin-walled, smooth, hyaline or subhyaline, straight or curved with an obtuse apex and obconically truncate base, with thickened and darkened hilum. These morphological characteristics matched those of C. chevalieri, the causal agent of leaf spot on A. paeoniifolius (Braun et al. 2014; Saccardo et al. 1913). A conidial suspension in sterile water from lesions was used to inoculate water agar, and germinated conidia were transferred to potato dextrose agar(PDA) and incubated at 27°C for 7 days. Induction of sporulation was unsuccessful using PDA, as well as malt extract agar, potato sucrose agar and synthetic nutrient-poor agar. Two out of ten isolates were selected for molecular identification and pathogenicity assay. Genomic DNA from two pure isolates (KUNCC22-12536 and KUNCC22-12537) was extracted for PCR and amplified with primers for the internal transcribed spacers (ITS: ITS1/ITS4), calmodulin (CMD: CAL228F/CAL2Rd), translation elongation factor 1-alpha (TEF1-α: 728F/986R), actin (ACT: 512F/783R), histone H3 (HIS3: CYLH3F/CYLH3R), beta-tubulin gene (TUB2: BT-1F/BT-1R) and glyceraldehyde-3-phosphate dehydrogenase (GAPDH: Gpd1/Gpd2), respectively (Vaghefi et al. 2021). The newly generated sequences for ITS (OP719153/OP719154), CMD(OP740904/OP740905), TEF1-α (OP740910/OP740911), ACT (OP740902/OP740903), HIS3 (OP740908/OP740909), TUB2 (OP740912/OP740913), GAPDH (OP740906/OP740907) of C. chevalieri were submitted to GenBank. So far, no sequence data of C. chevalieri were available in the GenBank database. As expected, most genes (TEF1-α, ACT, CMD, HIS, TUB2 and GAPDH) showed 91 to 95% identity to their best hits within species of the genus Cercospora. The phylogenetic tree showed that sequences retrieved from two isolates obtained from the A. konjac leaf spots clustered together within Cercospora forming a strongly supported clade. To test Koch's postulates, ten four-month-old healthy A. konjac plants grown in pots were used for a pathogenicity test in a greenhouse. One leaf of each plant was inoculated with mycelial plugs, and one leaf was inoculated with a sterile PDA plug. These plants were enclosed in plastic bags for 72 h. Only leaves inoculated with mycelium plugs produced brown lesions, which appeared after 10 to 14 days on inoculated leaves. Control plants treated with sterile PDA plugs remained asymptomatic. This experiment was repeated twice with the same results. C. chevalieri was reisolated from infected leaves and identified based on morphology and Sanger sequencing of the ITS region. To our knowledge, this is the first report of C. chevalieri causing leaf spot on A. konjac and the first report of this species from China (Braun et al. 2014), which provides key information for diagnosis and management of this disease.
Honglong Chu, Kun Dong, Yong Gao, Zhao Liu, Jie Huang, Yanan Zhang

1569 related Products with: First Report of Causing A Leaf Spot Disease on in China.

500 tests1 mg96 tests 50 UG1-99 mg/ml/ea price x 2500 tests

Related Pathways

paperclip

#39238250   2024/09/05 To Up

First report of causing anthracnose on winter squash in Korea.

Winter squash (Cucurbita maxima) is rich in vitamins C and B6 and is also a source of beta-carotene, a provitamin A carotenoid. About 13,000 tons have been produced annually in South Korea over the past 10 years. In the summer of 2022, severe rot was observed in winter squash for sale at a wholesale market in Jinju, South Korea, with approximately 10% of the 500 squashes observed affected. White fungal hyphae and dark orange spore masses were observed on the surface of the decayed squash. To isolate the causal agents, symptomatic tissues (3 × 3 mm) between diseased and healthy tissues per squash from 3 diseased squashes were excised, disinfested with 1% sodium hypochlorite for 20 s and 70% ethanol for 10 s, washed twice in sterilized distilled water, dried on sterilized filter paper, transferred to water agar, and incubated at 25°C for 2 days. Agar blocks (3 mm) containing fungal colonies were transferred to potato dextrose agar (PDA) plates and incubated at 25°C until fungal colonies grew. Three isolates (GNU F137a‒c) with similar morphology were subcultured using the single-spore method. In PDA, the colonies looked like gray cotton when viewed from the front, were pale orange from the back, and numerous small black sclerotia-like grains could be observed on both sides. Setae were pale to medium brown, verrucose, 40-120 μm long, and 3-6 septated. Conidiophores were hyaline to pale brown, smooth-walled, septate, branched, and up to 45 μm long. Conidia were hyaline, smooth walled, aseptate, straight, cylindrical, the apex and base rounded, and 14-18 × 5-7 μm (n = 30). Appressoria were single, brown, aseptate, ellipsoidal to irregular in outline, with crenate margins, and 3.5-5 × 3-5 μm (n = 30). The morphological features of the fungal isolates matched descriptions of Colletotrichum species. To confirm the identity of the isolated fungus, genomic DNA of all three isolates was extracted using the Phire Plant Direct PCR Kit (Thermo Fisher Scientific, Baltics, UAB). The internal transcribed spacers (ITS) of the ribosomal RNA gene region, glyceraldehyde-3-phosphate dehydrogenase (GAPDH), chitin synthase 1 (CHS-1), histone H3 (HIS3), actin (ACT), and beta-tubulin (TUB2) genes were amplified and sequenced using the primer pairs ITS1/ITS4, GDF/GDR, CHS-79F/CHS-354R, CYLH3F/CYLH3R, ACT-512F/ACT-783R, and T1/T2, respectively. The sequences were deposited in GenBank (acc. nos., PP504320 and PP555649-PP555653). Concatenated sequences of the six genes obtained from isolates GNU F137a‒c and ex-types from each accepted taxon in previous studies were used to conduct a phylogenetic analysis using the maximum likelihood method in MEGA 11. The fungus isolated from winter squash was in the same clade as C. liaoningense. Therefore, the isolates were identified as C. liaoningense. For pathogenicity tests, three winter squash were wounded with a sterilized needle and inoculated with each isolate by injecting 100 μl conidial suspension (10 conidia/ml). Control squash were injected with sterilized distilled water. All treated squash were incubated at 25°C in the dark. The test was performed three times. All inoculated winter squash reproduced symptoms within 15 days, whereas the control squash were symptomless. The morphological characteristics and ITS sequence of the re-isolated strain matched those of the inoculated strain. To the best of our knowledge, this is the first report of fruit rot of winter squash in Korea and is even the first report on C. liaoningense in Korea. This disease is considered a post-harvest disease because no cases have yet been discovered in the field in Korea. This report will facilitate epidemiological research and the development of effective disease control strategies.
Okhee Choi, Haeun Noh, Yeyeong Lee, Jinwoo Kim

2598 related Products with: First report of causing anthracnose on winter squash in Korea.

96 wells100ug96 tests5mg100μg100ug 25 G0.1 mg

Related Pathways

paperclip

#39237031   2024/09/03 To Up

Microtubules and cardiovascular diseases: insights into pathology and therapeutic strategies.

Microtubules, complex cytoskeletal structures composed of tubulin proteins in eukaryotic cells, have garnered recent attention in cardiovascular research. Investigations have focused on the post-translational modifications of tubulin, including acetylation and detyrosination. Perturbations in microtubule homeostasis have been implicated in various pathological processes associated with cardiovascular diseases such as heart failure, ischemic heart disease, and arrhythmias. Thus, elucidating the intricate interplay between microtubule dynamics and cardiovascular pathophysiology is imperative for advancing preventive and therapeutic strategies. Several natural compounds have been identified to potentially modulate microtubules, thereby exerting regulatory effects on cardiovascular diseases. This review synthesizes current literature to delineate the roles of microtubules in cardiovascular diseases and assesses the potential of natural compounds in microtubule-targeted therapies.
Qiaomin Wu, Yanli Wang, Jinfeng Liu, Xuanke Guan, Xing Chang, Zhiming Liu, Ruxiu Liu

1478 related Products with: Microtubules and cardiovascular diseases: insights into pathology and therapeutic strategies.

96 wells (1 kit)100ug1000 1 g100 mg100ug200ul10 mg 25 MG100ul25 mg100 mg

Related Pathways

paperclip

#39236366   2024/08/29 To Up

Higher levels of AKT-interacting protein in the frontal pole from people with schizophrenia are limited to a sub-group who have a marked deficit in cortical muscarinic M1 receptors.

We are studying the molecular pathology of a sub-group within schizophrenia (∼ 25 %: termed Muscarinic Receptor Deficit subgroup of Schizophrenia (MRDS)) who can be separated because they have very low levels of cortical muscarinic M1 receptors (CHRM1). Based on our transcriptomic data from Brodmann's area ((BA) 9, 10 and 33 (controls, schizophrenia and mood disorders) and the cortex of the CHRM1 mouse (a molecular model of aberrant CHRM1 signaling), we predicted levels of AKT interacting protein (AKTIP), but not tubulin alpha 1b (TUBA1B) or AKT serine/threonine kinase 1 (AKT1) and pyruvate dehydrogenase kinase 1 (PDK1) (two AKTIP-functionally associated proteins), would be changed in MRDS. Hence, we used Western blotting to measure AKTIP (BA 10: controls, schizophrenia and mood disorders; BA 9: controls and schizophrenia) plus TUBA1B, AKT1 and PDK1 (BA 10: controls and schizophrenia) proteins. The only significant change with diagnosis was higher levels of AKTIP protein in BA 10 (Cohen's d = 0.73; p = 0.02) in schizophrenia compared to controls due to higher levels of AKTIP only in people with MRDS (Cohen's d = 0.80; p = 0.03). As AKTIP is involved in AKT1 signaling, our data suggests that signaling pathway is particularly disturbed in BA 10 in MRDS.
Megan Snelleksz, Brian Dean

1412 related Products with: Higher levels of AKT-interacting protein in the frontal pole from people with schizophrenia are limited to a sub-group who have a marked deficit in cortical muscarinic M1 receptors.

100 1 Set100ug Lyophilized100ug Lyophilized100 100ug Lyophilized100ug Lyophilized100ug Lyophilized100ug Lyophilized100ug Lyophilized100ug Lyophilized1 mg

Related Pathways

paperclip

#39232346   2024/09/03 To Up

Plant microtubule nucleating apparatus and its potential signaling pathway.

Plant cell cortical microtubules are located beneath the plasma membrane and direct the location of cellulose synthases during interphase, influencing cell morphology. Microtubule-associated proteins (MAPs) regulate these microtubules in response to growth and environmental stimuli. This review focuses on recent advances in understanding microtubule nucleation mechanisms in plants and the spatiotemporal regulation of cortical arrays via phytohormone signaling. Emphasis is placed on the conserved nature of the gamma-tubulin ring complex (γTuRC) and plant-specific components. The discussion includes the role of the Augmin complex and the distinct function of the Msd1-Wdr8 complex in plants. We also explore the effects of hormone signaling, particularly brassinosteroids, on the microtubule regulatory apparatus. The interplay between hormone signaling pathways and microtubule dynamics, including phosphorylation events and post-translational modifications, is also addressed. Finally, the impact of environmental signals and the role of protein post-translational modifications in regulating microtubule organization are suggested for future research.
Noriyoshi Yagi, Satoshi Fujita, Masayoshi Nakamura

1392 related Products with: Plant microtubule nucleating apparatus and its potential signaling pathway.

1 mg2 Pieces/Box2 Pieces/Box1.5x10(6) cells2 Pieces/Box2 Pieces/Box2 Pieces/Box2 Pieces/Box2 Pieces/Box2 Pieces/BoxInhibitors1.5 x 10^6 cells

Related Pathways

paperclip

#39230869   2024/09/04 To Up

TUBB4A Inhibits Glioma Development by Regulating ROS-PINK1/Parkin-Mitophagy Pathway.

Glioma is a refractory malignant tumor with a powerful capacity for invasiveness and a poor prognosis. This study aims to investigate the role and mechanism of tubulin beta class IVA (TUBB4A) in glioma progression. The differential expression of TUBB4A in humans was obtained from databases and analyzed. Glioma cells U251-MG and U87-MG were intervened by pcDNA3.1(+) and TUBB4A overexpression plasmid. MTT, CCK8, LDH, wound healing, transwell, and western blotting were used to explore whether TUBB4A participates in the development of glioma. Reactive oxygen species (ROS) were detected by the DCFH-DA probe. Mitochondrial membrane potential (MMP) was examined by JC-1. It was found that TUBB4A expression level correlated with tumor grade, IDH1 status, 1p/19q status, and poor survival in glioma patients. In addition, TUBB4A overexpression inhibited the proliferation, migration, and invasion of U251-MG and U87-MG, while increasing the degree of apoptosis. Notably, TUBB4A overexpression promotes ROS generation and MMP depolarization, and induces mitophagy through the PINK1/Parkin pathway. Interestingly, mitochondria-targeted ROS scavenger reversed the effect of TUBB4A overexpression on PINK1/Parkin expression and mitophagy, whereas mitophagy inhibitor did not affect ROS production. And the effect of TUBB4A overexpression on mitophagy and glioma progression was consistent with that of PINK1/Parkin agonist. In conclusion, TUBB4A is a molecular marker for predicting the prognosis of glioma patients and an effective target for inhibiting glioma progression by regulating ROS-PINK1/Parkin-mitophagy pathway.
Xueru Xi, Suqin Chen, Xiaoli Zhao, Zimu Zhou, Shanjie Zhu, Xurui Ren, Xiaomei Wang, Jing Wu, Shuai Mu, Xianwen Li, Enfang Shan, Yan Cui

2820 related Products with: TUBB4A Inhibits Glioma Development by Regulating ROS-PINK1/Parkin-Mitophagy Pathway.

0.1 ml300 units2 Pieces/Box2 Pieces/Box2 Pieces/Box1.5 x 10^6 cells2 Pieces/Box1.5x10(6) cells2 Pieces/Box

Related Pathways