Only in Titles

Search results for: Anti-DDC(Netrin receptor DCC precursor) (Tumor suppressor protein DCC) Antibody

paperclip

Error loading info... Pleas try again later.
paperclip

#16917820   // To Up

Netrin/DCC-mediated attraction of vagal sensory axons to the fetal mouse gut.

Vagal sensory axons and migrating neural crest-derived precursor cells follow similar pathways to reach the gut. The crest-derived cells express the netrin receptor deleted in colorectal cancer (DCC) and migrate toward netrins expressed by the intestinal mucosa and pancreas; this attraction is required for the formation of submucosal and pancreatic ganglia. We tested the hypothesis that enteric netrins also attract vagal sensory fibers. These axons were located as a function of age in fetal mice by applying the lipophilic tracer 1,1'-dioctadecyl-3,3,3',3'-tetramethylindocarbocyanine perchlorate (DiI) bilaterally to nodose ganglia. DiI-labeled axons were found in the esophagus and proximal stomach by E12 and, more distally, in the small bowel at E14-E16. Transcripts encoding DCC were expressed in the nodose ganglia of mice from E12 to adulthood but were developmentally regulated. Paraesophageal anterior and posterior vagal trunks were DCC immunoreactive from E12 to E16. Transcripts encoding netrin-1 were expressed in the developing foregut and midgut; netrin-1 immunoreactivity was detected in the outer gut mesenchyme and mucosal epithelium. Neurites from explanted E14 nodose ganglia grew selectively toward cocultured E14 distal foregut explants (P < 0.01). Antibodies to DCC specifically abolished this preferential outgrowth (P < 0.05). Nodose axons also grew selectively toward cocultured netrin-secreting 293-EBNA cells (P < 0.005); antibodies to DCC again blocked this preferential outgrowth (P < 0.05). These data suggest that netrins, which are expressed in the bowel, attract DCC-expressing vagal sensory axons.
Elyanne M Ratcliffe, Suhas U Setru, Jason J Chen, Zhishan S Li, Fabien D'Autréaux, Michael D Gershon

2532 related Products with: Netrin/DCC-mediated attraction of vagal sensory axons to the fetal mouse gut.

1 mg1 mg0.1 mg96 wells (1 kit)1 moduleOne 96-Well Strip Micropl1 mg0.2 mg200 200 ug1 kit(96 Wells)100 ug

Related Pathways

paperclip

#12736344   // To Up

Netrin-1 is a chemorepellent for oligodendrocyte precursor cells in the embryonic spinal cord.

Netrin-1, secreted by floor plate cells, orients axon extension in relation to the ventral midline of the embryonic spinal cord. Oligodendrocyte precursor (OP) cells are born close to the ventral midline and migrate away from the floor plate. Here we show that OP cells, identified by expression of the platelet-derived growth factor alpha receptor, express the netrin receptors dcc and unc5h1 but do not express netrin-1. Using a microchemotaxis assay, we demonstrate that migrating OPs are repelled by a gradient of netrin-1 in vitro. Furthermore, application of netrin-1 to OPs in vitro triggers retraction of OP processes. In the absence of netrin-1 or Deleted in Colorectal Cancer (DCC) function in vivo, fewer OP cells migrate from the ventral to the dorsal embryonic spinal cord, consistent with netrin-1 acting as a repellent. In addition to their role regulating cell movement, DCC and UNC-5 homologs have been suggested to function as proapoptotic dependence receptors, triggering cell death in the absence of netrin-1. In contrast, we report no evidence of increased OP cell death in vivo or in vitro in the absence of either netrin-1 or DCC. These findings indicate that netrin-1 is a repellent cue for migrating OPs in the embryonic spinal cord.
Andrew A Jarjour, Colleen Manitt, Simon W Moore, Katherine M Thompson, Sung-Joo Yuh, Timothy E Kennedy

2594 related Products with: Netrin-1 is a chemorepellent for oligodendrocyte precursor cells in the embryonic spinal cord.

100ul100ug Lyophilized100ug Lyophilized100ug Lyophilized100ug Lyophilized 100ul100ug Lyophilized100ug Lyophilized100ug Lyophilized100ug Lyophilized100ug Lyophilized100ug Lyophilized

Related Pathways

paperclip

Error loading info... Pleas try again later.