

Biotinylated Anti-human VEGFR-3/FLT-4 (Cl. 1)

Description: This antibody was produced from a hybridoma resulting from the fusion of a mouse myeloma with B cells obtained from a mouse immunized with purified recombinant human Vascular Endothelial Growth Factor Receptor 3 (rh VEGFR-3/FLT-4) extracellular domain. The IgG_1 fraction of the hybridoma supernatant was purified by Protein G affinity chromatography and then biotinylated using a standard protocol.

VEGFR-3/FLT-4, belongs to the class III subfamily of receptor tyrosine kinases. VEGFR-3/FLT-4 mediates the angiogenic activity of VEGF-C and VEGF-D on lymphatic endothelial cells.

Host species: Mouse

Antigen: Recombinant human soluble FLT-4 protein

Purification: Protein-G affinity chromatography

Stabilizer: BSA (50X)

Buffer: 0.1M Tris-Cl, 0.2M NaCl, 0.02% NaN₃, pH 7.4

Formulation: lyophilized

Reconstitution: The lyophilized IgG is stable at 4° C for at least one month and for greater than a year when kept at -20° C. When reconstituted in sterile water to a concentration of >0.5 mg/ml the antibody is stable for at least six weeks at $2-4^{\circ}$ C. **Avoid repeated freeze-thaw cycles.**

Applications

ELISA: To detect human VEGFR-3/FLT-4 by direct ELISA a concentration of $0.5 - 1.5 \mu g/ml$ can be used. This purified IgG, in combination with compatible secondary reagents, allows the detection of 0.25- $0.5 \mu g/well$ rhVEGFR-3/FLT-4

Western Blot: For Western blot analysis, the antibody can be used at 0.5 - 1 μg/ml with the appropriate secondary reagents to detect human VEGFR-3/FLT-4. Depending on the visualisation method the detection limit for rh VEGFR-3/FLT-4 is approximately 5 ng/lane under reducing conditions.

Optimal dilutions should be determined by each laboratory for each application

Usage: Anti-human VEGFR-3/FLT-4 is offered for research use. Not for drug use. Not for human use.

Catalogue number: 101-MBi36 Size: 50 μg

Literature: Jussila et al., Cancer Res 58:1599, 1998