Instruction Manual

pSV40ß Mammalian lacZnls12co Expression Vector Version 1.01
 March 29, 2004

A Limited Label License covers this product (see Purchaser Notification). By use of this product, you accept the terms and conditions of the Limited Label License.

A plasmid expression vector for cloning and expression of proteins into mammalian cells with detection using the lacZnls12co -Galactosidase marker gene.
(MG)

Table of Contents

Table of Contents 2
Important Information. 2
Shipping and Storage 2
Contents 2
Quality Control 2
Accessory Products 3
Methods. 4
Using pSV40ßlacZnls12co 5
Transfection 6
Expression and Analysis 7
Creating Stable Cell Lines 7
Appendix 9
Recipes 9
Map and Features of pSV40ß lacZnls12co 10
Technical Service 18
Purchaser Notification 18
References. 19
Important Information:
MSDS Sheets and product safety information are available by request from Marker Gene Technologies, Inc. and by accessing our web site at www.markergene.com.

Shipping and Storage

The pSV40 1 lacZnls 12 co vector is shipped at room temperature. Store at $-20^{\circ} \mathrm{C}$ once resuspended. Products are guaranteed for six months from date of shipment when stored properly.
Contents

Item	Concentration
pSV40ßlacZnls12co Vector, lyophilized in TE buffer, pH $8.0 \quad 20 \mu \mathrm{~g}$	

Quality Control

The pSV40ß lacZnls12co vector has been qualified by restriction endonuclease digestion. $\mathrm{pSV} 40 \beta$ lacZnls12co is further qualified by transformation using an appropriate E. coli and mammalian cell strain in culture.

Accessory Products

Additional products that may be used with the pSV40ßlacZnls12co vector are now available from Marker Gene.

Ordering information is provided below.

Product	Unit Size	Catalog no.
pCMV β Mammalian lacZ Expression Vector	$20 \mu \mathrm{~g}$	M0951
pSV40 β Mammalian lacZ Expression Vector	$20 \mu \mathrm{~g}$	M0952
Expression of your recombinant fusion protein can be detected using:		
Fluorescein di- β-D-Galactopyranoside (FDG)	5 mg	M0250
Methylumbelliferyl- β-D-Galactopyranoside (MUG)	1 g	M0241
Resorufin- β-D-Galactopyranoside (Res-Gal)	10 mg	M0203
Trifluoromethylumbelliferyl- β-D-Galactopyranoside	100 mg	M0252
Carboxyumbelliferyl- β-D-Galactopyranoside (CUG)	5 mg	M0257
FACS Fluorescent Blue lacZ β-Galactosidase	1 kit	M0255
\quad Detection Kit	1 kit	M0276
β-Galactosidase Sample Kit	1 kit	M0259
in vivo lacZ β-Galactosidase Detection Kit	M0855	
Chemiluminescent lacZ β-Galactosidase Detection Kit	1 kit	

Methods

Overview

Description

- This common eukaryotic expression vector, pSV40 β expresses the full-length codonoptimized β-galactosidase gene (lacZnls12co) under the control of simian virus 40 (SV40) early promoter. When expressed in mammalian cells, the codon-optimized gene results in expression levels of β-galactosidase 15 -fold higher than those resulting from an analogous construct containing the native E. coli gene sequence. Enhanced transcript stability and increased translational efficiency provide for increased β-galactosidase expression, as suggested by RNA analysis. In addition, codon-optimization results in the elimination of several cryptic splice acceptor sites that are present in the native E. coli gene sequence and increases the amounts of un-spliced, full-length genomic RNA when used in a lentiviral vector containing a 5' splice donor. The nls 12 variant results from the addition of a twelve amino acid sequence, ProLysLysLysArgLysValGluAspProLysAsp (from the SV40 T antigen nuclear localization signal) after the methionine initiation residue.
- This vector is very useful for transfection of mammalian cells in culture and for use in other species. The β-galactosidase enzyme expression is enhanced by the SV40 late polyadenylation signal.
- pSV40ßlacZnls12co expression vector also contains the β-lactamase gene, which acts as a selection marker ($100 \mu \mathrm{~g} / \mathrm{mL}$ ampicillin resistance) in E. coli host.
- The β-galactosidase gene can be excised using the 5' Xhol and 3^{\prime} Not/ sites to allow the insertion of other genes to be expressed under the same regulatory elements in mammalian cells.
- For a map of pSV40 , see page 10.

The pSV40ßlacZnls12co Vector System

The pSV40ß lacZnls12co vector is a cloning vector that takes advantage of the site-specific recombination properties of bacteriophage lambda (Landy, 1989) to provide a rapid and highly efficient way to move your gene of interest into multiple vector systems. To express your gene of interest simply:

1. Clone your gene of interest into an entry vector to create an entry clone.
2. Perform an LR recombination reaction between the entry clone and a destination vector (e.g. $\mathrm{pSV40} \beta$) to generate the expression vector.
3. Transfect your expression clone into the cell line of choice for stable expression of your gene of interest.

Using pSV4Oß/acZnls12co

The pSV40ß/acZnls12co vector is supplied as a supercoiled plasmid. Although Marker Gene has previously recommended using a linearized destination vector for more efficient recombination, further testing has found that linearization of this vector is NOT required to obtain optimal results for a downstream application.

Propagating pSV40

If you wish to propagate and maintain pSV40ßlacZnls12co, we recommend using JM109 E. coli Competent Cells.

Entry Clone:

To recombine your gene into pSV40ßlacZnls12co, you should have an entry clone containing your gene of interest.

Points to consider before recombining:

Your insert should contain a Kozak consensus sequence with an ATG initiation codon for proper initiation of translation (Kozak, 1987; Kozak, 1991; Kozak, 1990). Other sequences are also possible, but the G or A at position -3 and the G at position +4 are the most critical for functional expression. If you wish to include the V 5 epitope and $6 x H i s$ tag, your gene in the entry clone should not contain a stop codon. The gene should also be designed to be in frame with the Cterminal epitope tag after recombination. If you do NOT wish to include the V5 epitope and 6xHis tag, please be sure that your gene contains a stop codon in the entry clone.

Transfection

Introduction: This section provides general information for transfecting your expression clone into the mammalian cell line of choice. We recommend that you include a positive control vector and a mock transfection (negative control) in your experiments to evaluate your results.

Plasmid Preparation:

Once you have generated your expression clone, you must isolate plasmid DNA for transfection. Plasmid DNA must be very clean and free from phenol and sodium chloride. Contaminants will kill the cells, and salt will interfere with lipid complexing, decreasing transfection efficiency. We recommend isolating the plasmid using a mini/midi prep kit such as the one available from Qiagen (Plasmid Midi Kit, Cat\# 12143).

Methods of Transfection:

For established cell lines (e.g. HeLa), consult original references or the supplier of your cell line for the optimal method of transfection. We recommend that you follow exactly the protocol for your particular cell line. Please pay particular attention to cell medium requirements, confluency and when to pass the cells, and at what dilution to split the cells. Further information is provided in Current Protocols in Molecular Biology (Ausubel et al., 1994). Methods for transfection include calcium phosphate (Chen and Okayama, 1987; Wigler et al., 1977), lipid-mediated (Felgner et al., 1989; Felgner and Ringold, 1989) and electroporation (Chu et al., 1987; Shigekawa and Dower, 1988). If you wish to use a lipid-based reagent for transfection, we recommend using Lipofectamine Reagent available from GIBCO-BRL. For more information contact our Technical Assistance Staff (www.markergene.com or techservice@markergene.com).

Positive Control:

We recommend the use of a positive control vector for mammalian cell transfection and expression which may be used to optimize recombinant protein expression levels in your particular cell line. A vector that allows expression of a C-terminally tagged β-galactosidase fusion protein that may be detected by Western blot or functional assay provides the easiest way to measure protein expression levels. Consult our technical assistance for more information about C-terminal fusion protein expression systems.

To propagate and maintain the plasmid:

1. Resuspend the vector in 20μ l sterile water to prepare a $1 \mu \mathrm{~g} / \mu \mathrm{L}$ stock solution and store at $-20^{\circ} \mathrm{C}$. Use the stock solution to transform a recA, endA E. coli strain like TOP10, JM109, or equivalent.
2. Select transformants on LB agar plates containing $50-100 \mu \mathrm{~g} / \mathrm{ml}$ ampicillin.
3. Prepare a glycerol stock of a transformant containing plasmid for long-term storage.

Expression and Analysis

Expression of your gene of interest from the expression clone can be performed in transiently transfected cells or stable cell lines.

Preparation of Cell Lysates:

To lyse cells:

1. Wash cell monolayers ($\sim 5 \times 10^{5}$ to 1×10^{6} cells) once with phosphate-buffered saline (PBS, available from Gibco, Catalog no. 10010-023 or see page 9 for a recipe).
2. Scrape cells into 1 ml PBS and pellet the cells at $1500 \times \mathrm{g}$ for 5 minutes.
3. Resuspend in $50 \mu \mathrm{l}$ Cell Lysis Buffer (Marker Gene Product \# M0626-003 or see page 9 for a recipe). Other cell lysis buffers are also suitable. Vortex mix.
4. Incubate cell suspension at $37^{\circ} \mathrm{C}$ for 10 minutes to lyse the cells. Note: You may prefer to lyse the cells at room temperature or on ice if degradation of your protein is a potential problem. 5. Centrifuge the cell lysate at $10,000 \times \mathrm{g}$ for 10 minutes at $4^{\circ} \mathrm{C}$ to pellet nuclei and transfer the supernatant to a fresh tube. Assay the lysate for protein concentration. Do not use protein assays utilizing Coomassie Blue or other dyes. NP-40 may interfere with the binding of the dye with the protein.
5. Add SDS-PAGE sample buffer (see page 12 for a recipe) to a final concentration of 1 X and boil the sample for 5 minutes.
6. Load $20 \mu \mathrm{~g}$ of lysate onto an SDS-PAGE gel and electrophorese. Use the appropriate percentage of acrylamide to resolve your fusion protein.

Detecting Recombinant Fusion Proteins:

To detect expression of your recombinant fusion protein by Western blot analysis, you may use the Anti-V5 antibodies or the Anti-His(C-term) antibodies available from Invitrogen or Amersham Biosciences or an antibody to your protein of interest.

Assay for β-galactosidase:

If you use a positive control vector, you may assay for β-galactosidase expression by Western blot analysis or activity assay using cell-free lysates (Miller, 1972). X-Gal staining, or fluorescence detection are common methods of analysis. Marker Gene offers a FACS Fluorescent Blue lacZ β-Galactosidase Detection Kit (Product M0255), and the in vivo lacZ β-Galactosidase Detection Kit (Product M0259) for fast and easy detection of β-galactosidase expression.

Purification of Recombinant Fusion Proteins:

The presence of the C-terminal polyhistidine (6xHis) tag in your recombinant fusion protein allows for purification using a metal-chelating resin (available from Life Technologies). Note: Other purification methods are suitable.

Creating Stable Cell Lines:

The neomycin resistance gene can be cloned into the pSV40ßlacZnls12co vector to allow selection of stable cell lines. If you wish to create stable cell lines, transfect your construct into the mammalian cell line of choice and select for foci using Geneticin®. General guidelines are provided below.

To obtain stable transfectants, we recommend that you linearize your pSV40 1 lacZnls12co construct before transfection. While linearizing the vector may not improve the efficiency of transfection, it increases the chances that the vector does not integrate in a way that disrupts elements necessary for expression in mammalian cells. To linearize your construct, cut at a unique site that is neither located within a critical element nor within your gene of interest.

Geneticin $®$ (G418) blocks protein synthesis in mammalian cells by interfering with ribosomal function. It is an aminoglycoside, similar in structure to neomycin, gentamycin, and kanamycin. Expression in mammalian cells of the bacterial aminoglycoside phosphotransferase gene (APH), derived from Tn5, results in detoxification of Geneticin® (Southern and Berg, 1982).

Geneticin ${ }^{\circledR}$ Selection Guidelines:

Geneticin $®^{\circledR}$ is available from GIBCO (Catalog no. 11811-023). Use as follows:

1. Prepare Geneticin® in a buffered solution (e.g. 100 mM HEPES, pH 7.3).
2. Use 100 to $1000 \mu \mathrm{~g} / \mathrm{ml}$ of Geneticin $®$ in complete medium.
3. Calculate concentration based on the amount of active drug.
4. Test varying concentrations of Geneticin $®$ on your cell line to determine the concentration that kills your cells (kill curve). Cells differ in their susceptibility to Geneticin®. Cells will divide once or twice in the presence of lethal doses of Geneticin® Selective Antibiotic, so the effects of the drug takes several days to become apparent. Complete selection for positive clones of cells can take up to 2 to 3 weeks of growth in selection medium.

Appendix

Recipes

LB (Luria-Bertani) Medium and Plates Composition:

1.0\% Tryptone
0.5\% Yeast Extract
$1.0 \% \mathrm{NaCl}$
pH 7.0

1. For 1 liter, dissolve 10 g tryptone, 5 g yeast extract, and 10 g NaCl in 950 ml deionized water.
2. Adjust the pH of the solution to 7.0 with NaOH and bring the volume up to 1 liter.
3. Autoclave on liquid cycle for 20 minutes at 15 psi . Allow solution to cool to $55^{\circ} \mathrm{C}$ and add antibiotic if needed. Store at room temperature or at $+4^{\circ} \mathrm{C}$.

LB agar plates:

1. Prepare LB medium as above, but add $15 \mathrm{~g} / \mathrm{L}$ agar before autoclaving.
2. Autoclave on liquid cycle for 20 minutes at 15 psi.
3. After autoclaving, cool to $\sim 55^{\circ} \mathrm{C}$, add antibiotic if needed, and pour into 10 cm plates.
4. Let harden, then invert and store at $+4^{\circ} \mathrm{C}$.

Cell Lysis Buffer:

25 mM Tris-phosphate (pH 7.8) containing 10% glycerol, 1% Triton X-100, $1 \mathrm{mg} / \mathrm{ml}$ BSA, 2 mM EGTA and 2 mM DTT 50 mM Tris, pH 7.8.

4X SDS-PAGE Sample Buffer:

1. Combine the following reagents:
0.5 M Tris-HCl, pH 6.8, 5 ml

Glycerol (100\%), 4 ml
β-mercaptoethanol, 0.8 ml
Bromophenol Blue, 0.04 g
SDS, 0.8 g
2. Bring the volume to 10 ml with sterile water.
3. Aliquot and freeze at $-20^{\circ} \mathrm{C}$ until needed.

Map and Features of $\mathrm{pSV} 40 \beta$ lacZnIs12co:
The map below shows the elements of pSV40 1 lacZnls12co. The β-galactosidase gene can be excised using the 5' Xhol and 3^{\prime} Notl sites to allow the insertion of other genes to be expressed under the same regulatory elements in mammalian cells.

Full Length Sequence Data of pSV40ßlacZnls12co:

```
GAATTCTAGT TGTGGTTTGT CCAAACTCAT CAATGTATCT TATCATGTCT
GGATCCGCTG TGGAATGTGT GTCAGTTAGG GTGTGGAAAG TCCCCAGGCT
CCCCAGCAGG CAGAAGTATG CAAAGCATGC ATCTCAATTA GTCAGCAACC
AGGTGTGGAA AGTCCCCAGG CTCCCCAGCA GGCAGAAGTA TGCAAAGCAT
GCATCTCAAT TAGTCAGCAA CCATAGTCCC GCCCCTAACT CCGCCCATCC
CGCCCCTAAC TCCGCCCAGT TCCGCCCATT CTCCGCCCCA TGGCTGACTA
ATTTTTTTTA TTTATGCAGA GGCCGAGGCC GCCTCGGCCT CTGAGCTATT
CCAGAAGTAG TGAGGAGGCT TTTTTGGAGG CCTAGGCTTT TGCAAAAAGC
TTGGACACAA GACAGGCTTG CGAGATATGT TTGAGAATAC CACTTTATCC
CGCGTCAGGG AGAGGCAGTG CGTAAAAAGA CGCGGACTCA TGTGAAATAC
TGGTTTTTAG TGCGCCAGAT CTCGAGGTCG ACGGTATCGA TAAGCTTAAC
```

551 CATCAGCAAG CAGGTCATTG TGCCACCACC ATGCCCAAGA AGAAGAGGAA 601 GGTGGAGGAC CCCAAGGACA TCACCGACTC CCTGGCCGTG GTGCTGCAGC 651 GCCGCGACTG GGAGAACCCC GGCGTGACCC AGCTGAACCG CCTGGCCGCC 701 САСССССССТ TCGCCTCCTG GCGCAACTCC GAGGAGGCCC GCACCGACCG CСССТСССАG CAGCTGCGCT CCCTGAACGG CGAGTGGCGC TTCGCCTGGT TCCCCGCCCC CGAGGCCGTG CCCGAGTCCT GGCTGGAGTG CGACCTGCCC GAGGCCGACA CCGTGGTGGT GCCCTCCAAC TGGCAGATGC ACGGCTACGA CGCCCCCATC TACACCAACG TGACCTACCC CATCACCGTG AACCCCCCCT TCGTGCCCAC CGAGAACCCC ACCGGCTGCT ACTCCCTGAC CTTCAACGTG GACGAGTCCT GGCTGCAGGA GGGCCAGACC CGCATCATCT TCGACGGCGT GAACTCCGCC TTCCACCTGT GGTGCAACGG CCGCTGGGTG GGCTACGGCC AGGACTCCCG ССTGCCCTCC GAGTTCGACC TGTCCGCCTT CCTGCGCGCC GGCGAGAACC GCCTGGCCGT GATGGTGCTG CGCTGGTCCG ACGGCTCCTA CCTGGAGGAC CAGGACATGT GGCGCATGTC CGGCATCTTC CGCGACGTGT CCCTGCTGCA CAAGCCCACC ACCCAGATCT CCGACTTCCA CGTGGCCACC CGCTTCAACG ACGACTTCTC CCGCGCCGTG CTGGAGGCCG AGGTGCAGAT GTGCGGCGAG CTGCGCGACT ACCTGCGCGT GACCGTGTCC CTGTGGCAGG GCGAGACCCA GGTGGCCTCC GGCACCGCCC CCTTCGGCGG CGAGATCATC GACGAGCGCG GCGGCTACGC CGACCGCGTG ACCCTGCGCC TGAACGTGGA GAACCCCAAG CTGTGGTCCG CCGAGATCCC CAACCTGTAC CGCGCCGTGG TGGAGCTGCA CACCGCCGAC GGCACCCTGA TCGAGGCCGA GGCCTGCGAC GTGGGCTTCC GCGAGGTGCG CATCGAGAAC GGCCTGCTGC TGCTGAACGG CAAGCCCCTG CTGATCCGCG GCGTGAACCG CCACGAGCAC CACCCCCTGC ACGGCCAGGT GATGGACGAG CAGACCATGG TGCAGGACAT CCTGCTGATG AAGCAGAACA ACTTCAACGC CGTGCGCTGC TCCCACTACC CCAACCACCC ССТGTGGTAC ACCCTGTGCG ACCGCTACGG CCTGTACGTG GTGGACGAGG CCAACATCGA GACCCACGGC ATGGTGCCCA TGAACCGCCT GACCGACGAC CCCCGCTGGC TGCCCGCCAT GTCCGAGCGC GTGACCCGCA TGGTGCAGCG CGACCGCAAC CACCCCTCCG TGATCATCTG GTCCCTGGGC AACGAGTCCG GCCACGGCGC CAACCACGAC GCCCTGTACC GCTGGATCAA GTCCGTGGAC CCCTCCCGCC CCGTGCAGTA CGAGGGCGGC GGCGCCGACA CCACCGCCAC CGACATCATC TGCCCCATGT ACGCCCGCGT GGACGAGGAC CAGCCCTTCC CCGCCGTGCC CAAGTGGTCC ATCAAGAAGT GGCTGTCCCT GCCCGGCGAG ACCCGCCCCC TGATCCTGTG CGAGTACGCC CACGCCATGG GCAACTCCCT GGGCGGCTTC GCCAAGTACT GGCAGGCCTT CCGCCAGTAC CCCCGCCTGC AGGGCGGCTT CGTGTGGGAC TGGGTGGACC AGTCCCTGAT CAAGTACGAC GAGAACGGCA ACCCCTGGTC CGCCTACGGC GGCGACTTCG GCGACACCCC CAACGACCGC CAGTTCTGCA TGAACGGCCT GGTGTTCGCC GACCGCACCC CCCACCCCGC CCTGACCGAG GCCAAGCACC AGCAGCAGTT CTTCCAGTTC CGCCTGTCCG GCCAGACCAT CGAGGTGACC TCCGAGTACC TGTTCCGCCA CTCCGACAAC GAGCTGCTGC ACTGGATGGT GGCCCTGGAC GGCAAGCCCC TGGCCTCCGG CGAGGTGCCC CTGGACGTGG CCCCCCAGGG CAAGCAGCTG ATCGAGCTGC CCGAGCTGCC CCAGCCCGAG TCCGCCGGCC AGCTGTGGCT GACCGTGCGC GTGGTGCAGC CCAACGCCAC CGCCTGGTCC GAGGCCGGCC ACATCTCCGC CTGGCAGCAG TGGCGCCTGG CCGAGAACCT GTCCGTGACC CTGCCCGCCG CCTCCCACGC CATCCCCCAC CTGACCACCT CCGAGATGGA СTTCTGCATC GAGCTGGGCA ACAAGCGCTG GCAGTTCAAC CGCCAGTCCG GCTTCCTGTC CCAGATGTGG ATCGGCGACA AGAAGCAGCT GCTGACCCCC CTGCGCGACC AGTTCACCCG CGCCCCCCTG GACAACGACA TCGGCGTGTC CGAGGCCACC CGCATCGACC CCAACGCCTG GGTGGAGCGC TGGAAGGCCG CCGGCCACTA CCAGGCCGAG GCCGCCCTGC TGCAGTGCAC CGCCGACACC CTGGCCGACG CCGTGCTGAT CACCACCGCC CACGCCTGGC AGCACCAGGG CAAGACCCTG TTCATCTCCC GCAAGACCTA CCGCATCGAC GGCTCCGGCC AGATGGCCAT CACCGTGGAC GTGGAGGTGG CCTCCGACAC CCCCCACCCC GCCCGCATCG GCCTGAACTG CCAGCTGGCC CAGGTGGCCG AGCGCGTGAA

3301

3351

 3401 3451CTGGCTGGGC CTGGGCCCCC AGGAGAACTA CCCCGACCGC CTGACCGCCG CCTGCTTCGA CCGCTGGGAC CTGCCCCTGT CCGACATGTA CACCCCCTAC GTGTTCCCCT CCGAGAACGG CCTGCGCTGC GGCACCCGCG AGCTGAACTA CGGCCCCCAC CAGTGGCGCG GCGACTTCCA GTTCAACATC TCCCGCTACT CCCAGCAGCA GCTGATGGAG ACCTCCCACC GCCACCTGCT GCACGCCGAG GAGGGCACCT GGCTGAACAT CGACGGCTTC CACATGGGCA TCGGCGGCGA CGACTCCTGG TCCCCCTCCG TGTCCGCCGA GTTCCAGCTG TCCGCCGGCC GCTACCACTA CCAGCTGGTG TGGTGCCAGA AGTAGTCTAG AGCGGCCGCG GGGATCCAGA CATGATAAGA TACATTGATG AGTTTGGACA AACCACAACT AGAATGCAGT GAAAAAAATG CTTTATTTGT GAAATTTGTG ATGCTATTGC TTTATTTGTA ACCATTATAA GCTGCAATAA ACAAGTTAAC AACAACAATT GCATTCATTT TATGTTTCAG GTTCAGGGGG AGGTGTGGGA GGTTTTTTCG GATCCTCTAG AGTCGACCTG CAGGCATGCA AGCTTGGCGT AATCATGGTC ATAGCTGTTT CCTGTGTGAA ATTGTTATCC GCTCACAATT CCACACAACA TACGAGCCGG AAGCATAAAG TGTAAAGCCT GGGGTGCCTA ATGAGTGAGC TAACTCACAT TAATTGCGTT GCGCTCACTG CCCGCTTTCC AGTCGGGAAA ССTGTCGTGC CAGCTGCATT AATGAATCGG CCAACGCGCG GGGAGAGGCG GTTTGCGTAT TGGGCGCTCT TCCGCTTCCT CGCTCACTGA CTCGCTGCGC TCGGTCGTTC GGCTGCGGCG AGCGGTATCA GCTCACTCAA AGGCGGTAAT ACGGTTATCC ACAGAATCAG GGGATAACGC AGGAAAGAAC ATGTGAGCAA AAGGCCAGCA AAAGGCCAGG AACCGTAAAA AGGCCGCGTT GCTGGCGTTT TTCCATAGGC TCCGCCCCCC TGACGAGCAT CACAAAAATC GACGCTCAAG TCAGAGGTGG CGAAACCCGA CAGGACTATA AAGATACCAG GCGTTTCCCC CTGGAAGCTC ССTСGTGCGC TСTССТGTTC CGACCCTGCC GCTTACCGGA TACCTGTCCG ССтTTСTCCC TTCGGGAAGC GTGGCGCTTT СТСАTAGCTC ACGCTGTAGG TATCTCAGTT CGGTGTAGGT CGTTCGCTCC AAGCTGGGCT GTGTGCACGA ACCCCCCGTT CAGCCCGACC GCTGCGCCTT ATCCGGTAAC TATCGTCTTG AGTCCAACCC GGTAAGACAC GACTTATCGC CACTGGCAGC AGCCACTGGT AACAGGATTA GCAGAGCGAG GTATGTAGGC GGTGCTACAG AGTTCTTGAA GTGGTGGCCT AACTACGGCT ACACTAGAAG GACAGTATTT GGTATCTGCG CTCTGCTGAA GCCAGTTACC TTCGGAAAAA GAGTTGGTAG СTCTTGATCC GGCAAACAAA CCACCGCTGG TAGCGGTGGT TTTTTTGTTT GCAAGCAGCA GATTACGCGC AGAAAAAAAG GATCTCAAGA AGATCCTTTG ATCTTTTCTA CGGGGTCTGA CGCTCAGTGG AACGAAAACT CACGTTAAGG GATTTTGGTC ATGAGATTAT CAAAAAGGAT CTTCACCTAG ATCCTTTTAA ATTAAAAATG AAGTTTTAAA TCAATCTAAA GTATATATGA GTAAACTTGG TCTGACAGTT ACCAATGCTT AATCAGTGAG GCACCTATCT CAGCGATCTG TCTATTTCGT TCATCCATAG TTGCCTGACT CCCCGTCGTG TAGATAACTA CGATACGGGA GGGCTTACCA TCTGGCCCCA GTGCTGCAAT GATACCGCGA GACCCACGCT CACCGGCTCC AGATTTATCA GCAATAAACC AGCCAGCCGG AAGGGCCGAG CGCAGAAGTG GTCCTGCAAC TTTATCCGCC TCCATCCAGT CTATTAATTG TTGCCGGGAA GCTAGAGTAA GTAGTTCGCC AGTTAATAGT TTGCGCAACG TTGTTGCCAT TGCTACAGGC ATCGTGGTGT CACGCTCGTC GTTTGGTATG GCTTCATTCA GCTCCGGTTC CCAACGATCA AGGCGAGTTA CATGATCCCC CATGTTGTGC AAAAAAGCGG TTAGCTCCTT CGGTCCTCCG ATCGTTGTCA GAAGTAAGTT GGCCGCAGTG TTATCACTCA TGGTTATGGC AGCACTGCAT AATTCTCTTA CTGTCATGCC ATCCGTAAGA TGCTTTTCTG TGACTGGTGA GTACTCAACC AAGTCATTCT GAGAATAGTG TATGCGGCGA CCGAGTTGCT CTTGCCCGGC GTCAATACGG GATAATACCG CGCCACATAG CAGAACTTTA AAAGTGCTCA TCATTGGAAA ACGTTCTTCG GGGCGAAAAC TCTCAAGGAT CTTACCGCTG TTGAGATCCA GTTCGATGTA ACCCACTCGT GCACCCAACT GATCTTCAGC ATCTTTTACT TTCACCAGCG TTTCTGGGTG AGCAAAAACA GGAAGGCAAA ATGCCGCAAA AAAGGGAATA AGGGCGACAC GGAAATGTTG AATACTCATA CTCTTCCTTT TTCAATATTA TTGAAGCATT TATCAGGGTT ATTGTCTCAT GAGCGGATAC ATATTTGAAT GTATTTAGAA

```
6051 AAATAAACAA ATAGGGGTTC CGCGCACATT TCCCCGAAAA GTGCCACCTG
6 1 0 1 ~ A C G T C T A A G A ~ A A C C A T T A T T ~ A T C A T G A C A T ~ T A A C C T A T A A ~ A A A T A G G C G T ~
6151 ATCACGAGGC CCTTTCGTCT CGCGCGTTTC GGTGATGACG GTGAAAACCT
6201 CTGACACATG CAGCTCCCGG AGACGGTCAC AGCTTGTCTG TAAGCGGATG
6251 CCGGGAGCAG ACAAGCCCGT CAGGGCGCGT CAGCGGGTGT TGGCGGGTGT
6301 CGGGGCTGGC TTAACTATGC GGCATCAGAG CAGATTGTAC TGAGAGTGCA
6 3 5 1 ~ C C A T A T G C G G ~ T G T G A A A T A C ~ C G C A C A G A T G ~ C G T A A G G A G A ~ A A A T A C C G C A ~
6 4 0 1 ~ T C A G G C G C C A ~ T T C G C C A T T C ~ A G G C T G C G C A ~ A C T G T T G G G A ~ A G G G C G A T C G ~
6451 GTGCGGGCCT CTTCGCTATT ACGCCAGCTG GCGAAAGGGG GATGTGCTGC
6501 AAGGCGATTA AGTTGGGTAA CGCCAGGGTT TTCCCAGTCA CGACGTTGTA
6551 AAACGACGGC CAGT
```


Restriction Sites:

Aarl (САССтGCnnnn'nnnn_)
Cuts 1 time. Cuts at position 3543.

AatII (G_ACGT'C) [ZraI]
Cuts 1 time. Cuts at position 6104.

ACCI (GT'mk_AC) [FblI,XmiI]
Cuts 2 times.

AclI (AA'CG_TT) [Psp1406I]
Cuts 2 times.

```
AcuI (CTGAAGnnnnnnnnnnnnnnn_nn') [Eco57I]
```

Cuts 2 times.

Afer (AGC'GCT) [Eco47III,Aor51HI,FunI]
Cuts 2 times.

AhdI (GACnn_n'nnGTC) [Eam1105I,AspEI,DriI,EclHKI]
Cuts 2 times.

AleI (CACnn'nnGTG) [OliI]

Cuts 2 times.

ApaI (G_GGCC'C) [Bsp120I,PspOMI]
[dcm methylated]
Cuts 1 time.
Cuts at position [3317].

ApoI (r'AATt_y) [AcsI,XapI]
Cuts 2 times.

AvrII (C'CTAG_G) [AspA2I,BlnI,XmaJI]
Cuts 1 time.
Cuts at position 381.

BanII (G_rGCy'C) [Eco24I,EcoT38I,FriOI]
Cuts 1 time. Cuts at position 3317.

BCiVI (GTATCCnnnnn_n') [BfuI] Cuts 2 times.

BfrBI (ATG'CAT) [ECOT22I,Mph1103I,NsiI,Zsp2I]
Cuts 2 times.

BglII (A'GATC_T)
Cuts 2 times.

BsaBI (GATnn'nnATC) [Bse8I,BseJI,MamI]
[dam methylated]
Cuts 2 times.

BSmI (GAATG_Cn') [BsaMI,Mva1269I,PctI]
Cuts 2 times.
BsmBI (CGTCTCn'nnnn_) [Esp3I]
Cuts 2 times.

BsrDI (GCAATG_nn') [Bse3DI,BseMI]
Cuts 2 times.

BSIGI (T'GTAC_A) [Bsp1407I,BstAUI,SspBI]
Cuts 1 time. Cuts at position 3387.

BssHII (G'CGCG_C) [BsePI,PauI]
Cuts 1 time.
Cuts at position 1144.

BstEII (G'GTnAC_C) [BstPI,Eco91I,Eco065I,PspEI]
Cuts 1 time.
Cuts at position 2524.
BstXI
(CCAn_nnnn'nTGG)
Cuts 1 time.
Cuts at position 3214.

```
ClaI (AT'CG_AT)
[BanIII,Bsa29I,BseCI,Bsp106I,BspDI,BspXI,Bsu15I,BsuTUI,ZhoI]
[dam methylated]
Cuts 1 time.
Cuts at position 537.
DraIII (CAC_nnn'GTG) [AdeI]
Cuts 1 time.
Cuts at position 1815.
DrdI (GACnn_nn'nnGTC) [AasI,DseDI]
Cuts 2 times.
ECORI (G'AATT_C) [FunII]
Cuts 1 time.
Cuts at position 1.
FalI (AAGnnnnnCTTMnnnnnnn_nnnnn')
Cuts 1 time.
Cuts at position 432.
FseI (GG_CCGG'CC)
Cuts 1 time.
Cuts at position 2748.
FspAI (rTGC'GCAy)
Cuts 1 time.
Cuts at position 1619.
HpaI (GTT'AAC) [KspAI]
Cuts 1 time.
Cuts at position 3837.
MfeI (C'AATt_G) [MunI]
Cuts 1 time.
Cuts at position 3846.
MSCI (TGG'CCA) [BalI,MlsI,MluNI,Msp20I]
[dcm methylated]
Cuts 2 times.
NdeI (CA'TA_TG) [FauNDI]
Cuts 1 time.
Cuts at position 6353.
NotI (GC'GGCC_GC) [CciNI]
Cuts 1 time.
Cuts at position 3693.
```

```
NsiI (A_TGCA'T) [BfrBI,EcoT22I,Mph1103I,Zsp2I]
Cuts 2 times.
PfoI (T'CCnGG_A)
Cuts 1 time.
Cuts at position 6215.
PmlI (CAC'GTG) [PmaCI,AcvI,BbrPI,Eco72I,PspCI]
Cuts 1 time.
Cuts at position 1291.
PpuMI (rG'GwC_Cy) [PpuxI,Psp5II,PspPPI]
[dcm methylated]
Cuts 2 times.
PsiI (TTA'TAA)
Cuts 1 time.
Cuts at position 3817.
PspOMI (G'GGCC_C) [ApaI,Bsp120I]
Cuts 1 time.
Cuts at position 3313.
PvuI (CG_AT'CG) [BspCI,Ple19I]
Cuts 2 times.
SacII (CC_GC'GG) [Cfr42I,KspI,Sfr303I,SgrBI]
Cuts 2 times.
SalI (G'TCGA_C)
Cuts 2 times.
SapI (GCTCTTCn'nnn_)
Cuts 1 time.
Cuts at position 4173.
SbfI (CC_TGCA'GG) [Sse8387I,SdaI]
Cuts 2 times.
ScaI (AGT'ACT) [ZrmI]
Cuts 2 times.
SexAI
    (A'CCwGG_T) [MabI]
[dcm methylated]
Cuts 1 time.
Cuts at position [148].
```

Sfil (GGCCn_nnn'nGGCC)
[dcm methylated]
Cuts 2 times.

```
SgrAI (Cr'CCGG_yG)
Cuts 1 time.
Cuts at position 1148.
SspI (AAT'ATT)
Cuts 1 time.
Cuts at position 5986.
TfiI (G'AwT_C) [PfeI]
Cuts 2 times.
Tth111I (GACn'n_nGTC) [AspI,PflFI,PsyI,TelI]
Cuts 1 time.
Cuts at position 1384.
XbaI
                            (T'CTAG_A)
[dam methylated]
Cuts 2 times.
XCmI (CCAnnnn_n'nnnnTGG)
Cuts 2 times.
XhOI (C'TCGA_G) [BssHI,PaeR7I,Sfr274I,SlaI,TliI]
Cuts 1 time.
Cuts at position 521.
XmnI (GAAnn'nnTTC) [Asp700I,MroXI,PdmI]
Cuts 2 times.
ZraI (GAC'GTC) [AatII]
Cuts 1 time.
Cuts at position 6102.
```


Technical Service

Please visit our website at www.markergene.com
Or write to techservice@markergene.com
Marker Gene is committed to providing our customers with premium-quality goods and services. We want to ensure that every customer is 100% satisfied with our products and our service. If you should have any questions or concerns about our products or service, please contact us at:

Marker Gene Technologies, Inc. 1850 Millrace Dr. Eugene, OR 97403-1992
 Toll Free: 1-888-218-4062
 Local: 1-541-342-3760
 Fax: 1-541-342-1960

The purchase of this product conveys to the buyer the non-transferable right to use the purchased amount of the product and components of the product in research conducted by the buyer (whether the buyer is an academic or for-profit entity). No license is conveyed under the foregoing patents to use this product with any recombination sites other than those purchased from Marker Gene Technologies, Inc. or its authorized distributor. The buyer cannot modify the recombination sequence(s) contained in this product for any purpose. The buyer cannot sell or otherwise transfer (a) this product (b) its components or (c) materials made using this product or its components to a third party or otherwise use this product or its components or materials made using this product or its components for commercial purposes. The buyer may transfer information or materials made through the use of this product to a scientific collaborator, provided that such transfer is not for the commercial purposes of the buyer, and that such collaborator agrees in writing (a) not to transfer such materials to any third party, and (b) to use such transferred materials and/or information solely for research and not for commercial purposes. Commercial purposes means any activity by a party for consideration and may include, but is not limited to: (1) use of the product or its components in manufacturing; (2) use of the product or its components to provide a service, information, or data; (3) use of the product or its components for therapeutic, diagnostic or prophylactic purposes; or (4) resale of the product or its components, whether or not such product or its components are resold for use in research. The user warrants to Marker Gene Technologies, Inc. that it will not use the purchase products or any part thereof for any purpose that is in contravention of any applicable law or regulation or in a manner that will infringe the copyright, trademarks, service marks or other intellectual property rights of third parties or violate the privacy, publicity or other personal rights of others or in any defamatory, obscene, threatening, abusive or hateful manner. The user shall indemnify Marker Gene Technologies, Inc., its employees and agents, harmless against all claims, liability, losses, damages and expenses including, without limitation, legal fees and costs arising out of or incurred as a result of any claims made, or litigation brought, against Marker Gene Technologies, Inc., its employees and agents, as a result of the use by the user of the purchased products or any part thereof for whatever purpose, to the fullest extent permitted by law.

References

Anson DS, Limberis M. (2004) "An improved β-galactosidase reporter gene." J of Biotech 108: 17-30.

Ausubel FM, Brent R, Kingston RE, Moore DD, Seidman JG, Smith JA, Struhl K. (1994). Current Protocols in Molecular Biology (New York: Greene Publishing Associates and WileyInterscience).

Chen C, Okayama H. (1987). "High-efficiency transformation of mammalian cells by plasmid DNA." Mol Cell Biol 7: 2745-2752.

Chu G, Hayakawa H, Berg P. (1987). "Electroporation for the efficient transfection of mammalian cells with DNA." Nucleic Acids Res 15: 1311-1326.

Felgner PL, Ringold GM. (1989). "Cationic liposome-mediated transfection." Nature 337: 387-388.
Landy A. (1989). "Dynamic, structural, and regulatory aspects of lambda sitespecific recombination." Annu Rev Biochem 58: 913-949.

MacGregor GR, Caskey CT. (1989). "Construction of plasmids that express E.coli betagalactosidase in mammalian cells." Nucleic Acids Res 17: 2365.

Miller JH. (1972). Experiments in Molecular Genetics (Cold Spring Harbor, New York: Cold Spring Harbor Laboratory).

Nolan GP, Fiering S, Nicolas JF, Herzenberg LA.(1988). "Fluorescence-activated cell analysis and sorting of viable mammalian cells based on β-D-galactosidase activity after transduction of Escherichia coli lacZ." Proc. Natl. Acad. Sci (USA). 85(8):2603-2607.

Norton PA, Coffin JM. (1984). "Bacterial β-galactosidase as a marker of Rous sarcoma virus gene expression and replication." Mol Cell Biol 5: 281.

Southern PJ, Berg P. (1982). "Transformation of mammalian cells to antibiotic resistance with a bacterial gene under control of the SV40 Early Region Promoter." J Molec Appl Gen 1: 327-339.

Marker Gene Technologies, Inc. University of Oregon Riverfront Research Park 1850 Millrace Drive
Eugene, Oregon 97403
1-888-218-4062
Email: techservice@markergene.com

