Only in Titles

           Search results for: rat    

paperclip

#32061184   // Save this To Up

Intermittent dosing of the transforming growth factor beta receptor 1 inhibitor, BMS-986260, mitigates class-based cardiovascular toxicity in dogs but not rats.

Small-molecule inhibitors of transforming growth factor beta receptor 1 (TGFβRI) have a history of significant class-based toxicities (eg, cardiac valvulopathy) in preclinical species that have limited their development as new medicines. Nevertheless, some TGFβRI inhibitors have entered into clinical trials using intermittent-dosing schedules and exposure limits in an attempt to avoid these toxicities. This report describes the toxicity profile of the small-molecule TGFβRI inhibitor, BMS-986260, in rats and dogs. Daily oral dosing for 10 days resulted in valvulopathy and/or aortic pathology at systemic exposures that would have been targeted clinically, preventing further development with this dosing schedule. These toxicities were not observed in either species in 1-month studies using the same doses on an intermittent-dosing schedule of 3 days on and 4 days off (QDx3 once weekly). Subsequently, 3-month studies were conducted (QDx3 once weekly), and while there were no cardiovascular findings in dogs, valvulopathy and mortality occurred early in rats. The only difference compared to the 1-month study was that the rats in the 3-month study were 2 weeks younger at the start of dosing. Therefore, a follow-up 1-month study was conducted to evaluate whether the age of rats influences sensitivity to target-mediated toxicity. Using the same dosing schedule and similar doses as in the 3-month study, there was no difference in the toxicity of BMS-986260 in young (8 weeks) or adult (8 months) rats. In summary, an intermittent-dosing schedule mitigated target-based cardiovascular toxicity in dogs but did not prevent valvulopathy in rats, and thus the development of BMS-986260 was terminated.

2253 related Products with: Intermittent dosing of the transforming growth factor beta receptor 1 inhibitor, BMS-986260, mitigates class-based cardiovascular toxicity in dogs but not rats.

Rabbit Anti-Insulin Recep Rabbit Anti-Insulin Recep Rabbit Anti-Insulin Recep Mouse Insulin-like Growth Rabbit Anti-Insulin Recep Rabbit Anti-Insulin Recep Human Transforming Growth Rabbit Anti-Insulin Recep Rabbit Anti-Insulin Recep Rabbit Anti-Insulin Recep Phenethyl 1 thio beta D g TGF beta induced factor 2

Related Pathways

paperclip

#32061171   // Save this To Up

Inhibition of MiR-122 Decreases Cerebral Ischemia-reperfusion Injury by Upregulating DJ-1-Phosphatase and Tensin Homologue Deleted on Chromosome 10 (PTEN)/Phosphonosinol-3 Kinase (PI3K)/AKT.

BACKGROUND Ischemia-reperfusion injury is caused by a blood reperfusion injury in ischemic brain tissue, and usually occurs in the treatment stage of ischemic disease, which can aggravate brain tissue injury. MiR-122 is closely related to ischemia-reperfusion injury in the myocardium, kidney, and liver; however, the role in cerebral ischemia-reperfusion injury has not been established. MATERIAL AND METHODS In this study, cerebral ischemia-reperfusion injury was established in a rat model, and the control group was a sham-operated group. After ischemia-reperfusion injury for 6, 12, and 24 hours, brain tissue specimens were collected and the expression of miR-122 and DJ-1 were determined using quantitative real-time polymerase chain reaction. Flow cytometry was used to determine the reactive oxygen species (ROS) content. The modified Neurological Severity Score (mNSS) scale was used to evaluate the sensory and motor function defects of the rats. The malondialdehyde (MDA), superoxide dismutase (SOD), and enzyme activity were determined. The rats in the cerebral ischemia-reperfusion injury model were divided into 2 groups (antagomir-NC group and antagomir miR-122 group). Brain neuron RN-c cells were divided into the following 4 groups: antagomir-NC, antagomir miR-122, pIRES2-blank, and pIRES2-DJ-1. Seventy-two hours after transfection, ischemia-reperfusion treatment was carried out and conventional cultured RN-c cells were used as the control group. Flow cytometry was used to detect apoptosis and western blot was used to detect the expression of DJ-1, PTEN, AKT, and p-AKT. RESULTS The expression of miR-122 increased significantly in the process of ischemia-reperfusion damage after cerebral infarction, while the expression of DJ-1 decreased significantly. Downregulation of miR-122 significantly increased the expression of DJ-1, enhanced the activity of the PTEN/PI3K/AKT pathway, reduced cell apoptosis, and alleviated cerebral ischemia-reperfusion injury. CONCLUSIONS Inhibition of miR-122 can decrease cerebral ischemia-reperfusion injury by upregulating DJ-1-PTEN/PI3K/AKT pathway.

2844 related Products with: Inhibition of MiR-122 Decreases Cerebral Ischemia-reperfusion Injury by Upregulating DJ-1-Phosphatase and Tensin Homologue Deleted on Chromosome 10 (PTEN)/Phosphonosinol-3 Kinase (PI3K)/AKT.



Related Pathways

paperclip

#32061147   // Save this To Up

Design, Microwave-Assisted Synthesis, Biological Evaluation and Molecular Modeling Studies of 4-Phenylthiazoles as Potent Fatty Acid Amide Hydrolase Inhibitors.

Endocannabinoids, anandamide (AEA) and 2-arachidonoylglycerol (2-AG), are endogenous lipids that activate cannabinoid receptors. Activation of these receptors produces anti-inflammatory and analgesic effects. Fatty acid amide hydrolase (FAAH) is a membrane enzyme that hydrolases endocannabinoids, thus inhibition of FAAH represents an attractive approach to develop new therapeutics for treating inflammation and pain. Previously, potent rat FAAH inhibitors containing 2-naphthyl- and 4-phenylthiazole scaffolds were identified, but up to the present time, very little structure-activity relationship (SAR) studies have been performed on these moieties. We designed and synthesized several analogs containing these structural motifs and evaluated their inhibition potencies against human FAAH enzyme. In addition, we built and validated a homology model of human FAAH enzyme and performed docking experiments. We identified several inhibitors in the low nanomolar range and calculated their ADME predicted values. These FAAH inhibitors represent promising drug candidates for future preclinical in vivo studies.

1185 related Products with: Design, Microwave-Assisted Synthesis, Biological Evaluation and Molecular Modeling Studies of 4-Phenylthiazoles as Potent Fatty Acid Amide Hydrolase Inhibitors.

BSA, Fatty Acid-Free(Assa EnzyChrom™ Free Fatty A BSA, Fatty Acid-Free (Ass EnzyChrom™ Free Fatty A BSA, Fatty Acid-Free(Assa Free Fatty Acid Quantific Triglyceride Assay Kit Li Branched Chain Amino Acid L Ascorbic acid 6 palmita Rabbit Anti-D.Aspartic ac Cell Meter™ NIR Mitocho Rabbit Anti-D.Aspartic ac

Related Pathways

paperclip

#32061141   // Save this To Up

Oxidative stress accelerates synaptic glutamate dyshomeostasis and NMDARs disorder during methylmercury-induced neuronal apoptosis in rat cerebral cortex.

Methylmercury (MeHg) is a potent neurotoxin,which leads to a wide range of intracellular effects. The molecular mechanismsassociated to MeHg-induced neurotoxicity have not been fully understood.Oxidative stress, as well as synaptic glutamate (Glu) dyshomeostasis have beenidentified as two critical mechanisms during MeHg-mediated cytotoxicity. Here,we developed a rat model of MeHg poisoning to evaluate its neurotoxic effectsby focusing on cellular oxidative stress and synaptic Glu disruption. Inaddition, we investigated the neuroprotective role of alpha-lipoic acid (α-LA), a natural antioxidant, todeeply explore the underlying interaction between them. Fifty-six rats wererandomly divided into four groups: saline control, MeHg treatment (4 or 12μmol/kg MeHg), and α-LApre-treatment (35 μmol/kg α-LA+12μmol/kg MeHg). Rats exposed to 12 μmol/kg MeHg induced neuronal oxidativestress, with ROS accumulation and cellular antioxidant system impairment. Nrf2 andxCT pathways were activated with MeHg treatment. The enzymatic or non-enzymaticof cellular GSH synthesis were also disrupted by MeHg. On the other hand, the abnormalactivities of GS and PAG disturbed the "Glu-Gln cycle", leading to NMDARsover-activation, Ca2+ overload, and the calpain activation, which acceleratedNMDARs degradation. Meanwhile, the high expressions of phospho-p44/42 MAPK,phospho-p38 MAPK, phospho-CREB, and the high levels of caspase 3 and Bax/Bcl-2 finallyindicated the neuronal apoptosis after MeHg exposure. Pre-treatment with α-LA significantly preventedMeHg-induced neurotoxicity. In conclusion, the oxidative stress and synapticGlu dyshomeostasis contributed to MeHg-induced neuronal apoptosis. Alpha-LAattenuated these toxic effects through mechanisms of anti-oxidation andindirect Glu dyshomeostasis prevention.

2886 related Products with: Oxidative stress accelerates synaptic glutamate dyshomeostasis and NMDARs disorder during methylmercury-induced neuronal apoptosis in rat cerebral cortex.

Anti beta3 AR Human, Poly Anti VGLUT 1 Rat, polyclo Jurkat Cell Extract (Indu Anti-AICDA(Activation-ind Anti Apoptosis Inducing F Apoptosis Inducing Factor Apoptosis (Human) Antibod Anti AGO2 Mouse, Monoclon Apoptosis Inducing Factor 8 Isoprostane oxidative s Apoptosis antibody array Anti AGO2 Mouse, Monoclon

Related Pathways

paperclip

#32061126   // Save this To Up

Metabolism and Effects on Endogenous Metabolism of Paracetamol (Acetaminophen) in a Porcine Model of Liver Failure.

The metabolic fate, toxicity and effects on endogenous metabolism of paracetamol (acetaminophen, APAP) in 22 female Landrace cross large white pigs were evaluated in a model of acute liver failure (ALF). Anaesthetized pigs were initially dosed at 250 mg/kg via an oroduodenal tube with APAP serum concentrations maintained above 300 mg/L using maintenance doses of 0.5-4g/h until ALF. Studies were undertaken to determine both the metabolic fate of APAP and its effects on the endogenous metabolic phenotype of ALF in using 1H NMR spectroscopy. Increased concentrations of citrate combined with pre-ALF increases in circulating lactate, pyruvate and alanine in plasma suggest mitochondrial dysfunction and a switch in hepatic energy metabolism to glycolysis in response to APAP treatment. A specific liquid chromatography-tandem mass spectrometry assay was used to quantify APAP and metabolites. The major circulating and urinary metabolite of APAP was the phenolic glucuronide (APAP-G), followed by p-aminophenol glucuronide (PAP-G) formed from N-deacetylated APAP. The PAP produced by N-deacetylation was the likely cause of the methaemoglobinemia and kidney toxicity observed in this, and previous, studies in the pig. The phenolic sulfate of APAP, and the glutathione-derived metabolites of the drug were only found as minor components (with the cysteinyl conjugate detected but not the mercapturate). Given its low sulfation, combined with significant capacity for N-deacetylation the pig may represent a poor translational model for toxicology studies for compounds undergoing significant metabolism by sulfation, or which contain amide bonds which when hydrolysed to unmask an aniline lead to toxicity. However, the pig may provide a useful model where extensive amide hydrolysis is seen for drugs or environmental chemicals in humans, but not in e.g., the rat and dog which are the pre-clinical species normally employed for safety assessment.

1960 related Products with: Metabolism and Effects on Endogenous Metabolism of Paracetamol (Acetaminophen) in a Porcine Model of Liver Failure.



Related Pathways

paperclip

#32061051   // Save this To Up

Intravenous administration of iPS-MSC mobilized into CKD parenchyma and effectively preserved residual renal function in CKD rat.

This study traced intravenously administered induced pluripotent stem cell (iPSC)-derived mesenchymal stem cells (MSC) and assessed the impact of iPSC-MSC on preserving renal function in SD rat after 5/6 nephrectomy. The results of in vitro study showed that FeraTrack™Direct contrast particles (ie intracellular magnetic labelling) in the iPSC-MSC (ie iPS-MSC ) were clearly identified by Prussian blue stain. Adult-male SD rats (n = 40) were categorized into group 1 (SC), group 2 [SC + iPS-MSC (1.0 × 10 cells)/intravenous administration post-day-14 CKD procedure], group 3 (CKD), group 4 [CKD + iPS-MSC (0.5 × 10 cells)] and group 5 [CKD + iPS-MSC (1.0 × 10 cells)]. By day-15 after CKD induction, abdominal MRI demonstrated that iPS-MSC were only in the CKD parenchyma of groups 4 and 5. By day 60, the creatinine level/ratio of urine protein to urine creatinine/kidney injury score (by haematoxylin and eosin stain)/fibrotic area (Masson's trichrome stain)/IF microscopic finding of kidney injury molecule-1 expression was lowest in groups 1 and 2, highest in group 3, and significantly higher in group 4 than in group 5, whereas IF microscopic findings of podocyte components (ZO-1/synaptopodin) and protein levels of anti-apoptosis ((Bad/Bcl-xL/Bcl-2) exhibited an opposite pattern to creatinine level among the five groups (all P < .0001). The protein expressions of cell-proliferation signals (PI3K/p-Akt/m-TOR, p-ERK1/2, FOXO1/GSK3β/p90RSK), apoptotic/DNA-damage (Bax/caspases8-10/cytosolic-mitochondria) and inflammatory (TNF-α/TNFR1/TRAF2/NF-κB) biomarkers displayed an identical pattern to creatinine level among the five groups (all P < .0001). The iPS-MSC that were identified only in CKD parenchyma effectively protected the kidney against CKD injury.

2381 related Products with: Intravenous administration of iPS-MSC mobilized into CKD parenchyma and effectively preserved residual renal function in CKD rat.



Related Pathways