Only in Titles

Search results for: reductase

paperclip

#36725858   2023/02/01 To Up

Dosage differences in 12-OXOPHYTODIENOATE REDUCTASE genes modulate wheat root growth.

Wheat, an essential crop for global food security, is well adapted to a wide variety of soils. However, the gene networks shaping different root architectures remain poorly understood. We report here that dosage differences in a cluster of monocot-specific 12-OXOPHYTODIENOATE REDUCTASE genes from subfamily III (OPRIII) modulate key differences in wheat root architecture, which are associated with grain yield under water-limited conditions. Wheat plants with loss-of-function mutations in OPRIII show longer seminal roots, whereas increased OPRIII dosage or transgenic over-expression result in reduced seminal root growth, precocious development of lateral roots and increased jasmonic acid (JA and JA-Ile). Pharmacological inhibition of JA-biosynthesis abolishes root length differences, consistent with a JA-mediated mechanism. Transcriptome analyses of transgenic and wild-type lines show significant enriched JA-biosynthetic and reactive oxygen species (ROS) pathways, which parallel changes in ROS distribution. OPRIII genes provide a useful entry point to engineer root architecture in wheat and other cereals.
Gilad Gabay, Hanchao Wang, Junli Zhang, Jorge I Moriconi, German F Burguener, Leonardo D Gualano, Tyson Howell, Adam Lukaszewski, Brian Staskawicz, Myeong-Je Cho, Jaclyn Tanaka, Tzion Fahima, Haiyan Ke, Katayoon Dehesh, Guo-Liang Zhang, Jin-Ying Gou, Mats Hamberg, Guillermo E Santa-MarĂ­a, Jorge Dubcovsky

1083 related Products with: Dosage differences in 12-OXOPHYTODIENOATE REDUCTASE genes modulate wheat root growth.